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CHANGE-POINT PROBLEMS IN REGRESSION

Hyune-Ju Kim, Ph.D.

Stanford University, 1988

This dissertation focuses on the problem of testing for a change in the regression

model when errors are independently, normally distributed with constant, known or un-

known variance. First we consider the regression model in which only the intercept changes

at some unknown point (Model-i). Secondly, the model in which both intercept and slope

change is.considered (Model-2). In all cases, the likelihood ratio statistic (LRS) is of the

form U = maxl<i<m U,, where distributions of U,'s vary according to the assumptions.

In both models, we consider5the likelihood ratio test (LRT) as the problem of the

boundary crossing by the discrete stochastic process and stu4y problems such as approx-

imations to significance levels, powers, and confidence regions for a change point. First of

all, we propose.'a modified LRT and discusssasymptotic properties of test statistics in cases

of random and fixed independent variables. In both cases "erive,analytical approxi-

mations to significance levels. When the independent variables are random, the limiting

distribution of the modified LRS is a function of a Brownian motion and approximations

in Siegmund (1986, Annals of Statistics) are used. For fixed independent variables, the

limiting distribution involves a Gaussian process with nondifferentiable sample paths. In '

this case, an approximation is derived assuming the known variance and mild conditions

about the empirical distribution of the indepen ent variable, using the argument in Lead-

better, Lindgren and Rotzen (1983,Chapterl_2jmodified for discrete time by Hogan and

Siegmund,(1986, Advances in Applied Mathematics). In Model-i, we are also concerned

with the power of the LRT and confidence regions for a change point.

Numerical approximations of significance levels and powers of the LRT and the results

of corresponding Monte Carlo experiments are obtained. We find that the simulations

confirm that the theoretical results perform well and demonstrate that the results also

can be applied to the unknown variance case.

iii



Acknowledgments

I would like to thank Professor David Siegmund for being a great dissertation advi-

sor. He suggested this research topic and provided me with valuable ideas and insights,

unending patience and encouragement, and careful reading of my work throughout the

writing of this dissertation. It has been a great pleasure to be a student of Professor

Siegmund whom I will remember as an enthusiastic researcher, wonderful teacher, and

sincere advisor with my Stanford life.

I also thank Professors T.L.Lai and Iain Johnstone for reading the manuscript and

many helpful comments.

I am particularly grateful to my parents, Donghyuck Kim and Kwangsoon Lee, and

my dear husband Youngbai Moon for their love and support.

Finally, I thank my Lord for giving me the opportunity to study at Stanford and for

guiding me all through my life.

L,

iv

_r ',._*

- V Y " 'W " "e" -. ' ' -" ' " " ''" ' :-' -... : ' ? * : I..~ : : i' i5 ~.~%f~W5 n..~~



Table of Contents

1 Introduction ...... ............... 1

1.1 Change-Point Problems . . . . . . . . . . . 1

1.2 Two-Phase Regression . . . . . . . . . . . . 3

2 Change in Intercept Alone ........ . . 7

2.1 Models and Test Statistics . . . . . . . . . . . 7

2.2 Asymptotic Behavior of Test Statistics 11

2.2.1 When the Independent Variable is Random . . . 12

2.2.2 When the Independent Variable is Fixed . . . . . . . 16

2.3 Approximations to Significance Levels . . . . . . . 22

2.3.1 When the Independent Variable is Random . . . . . . 22

2.3.2 When the Independent Variable is Fixed . . . . . 23

2.4 Powers and Confidence Regions . . . . . . . . . 30

3 Change in Both Intercept and Slope . . . . . . . . 41

3.1 Models and Test Statistics . . . . . . . . . . . 41

3.2 Asymptotic Behavior of Test Statistics 46

3.2.1 When the Independent Variable is Random . . . 47

3.2.2 When the Independent Variable is Fixed . . . . . . . 51

3.3 Approximations to Significance Levels . . . . . . . . 54

3.3.1 When the Independent Variable is Random . . . . . . 55

3.3.2 When the Independent Variable is Fixed . . . . . . . 56

4 Concluding Remarks ......... . . . . 63

Tables............ . . . 65

Appendices............. . . . 74

References............ . . . . 78

V.



chapter 1

Introduction

1.1. Change-Point Problems

In recent years increasing interest has been shown in problems about stability of

models for a sequence of observations. When a series of observations is taken sequentially,

it can happen that the whole set of observations can be divided into subsets, each of which

can be regarded as a random sample from a different distribution. Assuming points at

which model changes are unknown, basically two distinct problems arise : detection and

estimation of change points.

Change-point problems originally arose in quality control to detect changes in the

quality of output from a continuous production process. A process in control maintains

an approximately constant quality of output. Suppose that the process jumps out of

control at some unknown point, the quality worsens and the output become unacceptable.

In order to take actions when such a deterioration is suspected, it is required to signal any

departure of the output from the target value as soon as possible.

One of the simplest examples is the problem of detecting a single change in the mean

of normal random variables having known and fixed variance. Sequential detection of a

change in the mean of the distribution of observations has been studied by Page (1954),

Shiryayev (1963), Lorden (1971), and Pollak (1985). For fixed sample problems involving

a finite sequence of observations, Siegmund (1986) gave an analytic approximation for

a significance level of the likelihood ratio test (LRT) and discussed confidence sets for ,

a change point. James, James. and Siegmund (1987) considered the unknown variance

case as well as the known variance case and studied various tests, such as those based on

0,



Section 1.1: Change-Point Problems 2

the likelihood ratio and recursive residuals. Also power approximations were developed

by integrating approximations for conditional boundary crossing probabilities.

Change-point problems arise in various ways and have been considered in regession

models, time-series models, and survival analysis. For a change in a binomial probabil-

ity, Hinkley and Hinkley (1970) used maximum likelihood methods to estimate a change

point for binary random variables and. derived exact and asymptotic distributions of the

maximum likelihood estimator of the change point. A cumulative sum test statistic for

this problem was proposed by Pettitt (1980) and a nonparametric cumulative sum statis-

tic was applied to binomial random variables by Pettitt (1979). An example of this type

of a change in epidemiology was described in Worsley (1983), who used the LRT to test S

for a change in probability of a sequence of independent binomial random variables. He

also compared powers of the LRT and the cumulative sum test and discussed the rela-

tionship between the cumulative sum test and a two-sample Kolmogorov-Smirnov test.

Worsley (1986) used maximum likelihood methods to test for a change in a sequence

of independent random variables from an exponential family.. He found the exact null

and alternative distributions of the test statistics using an iterative numerical procedure.

Exact and approximate confidence regions for the change point were given, based on a

level a LRT and a modification of the method proposed by Cox and Spijotvoll (1982). He

also discussed an application to the data set on the time intervals between explosions in N'

British coal mines between 1875 and 1950.

Change-point problems in time-series models have been considered in Picard (1985)

who discussed applications to Canadian lynx data, IBM common stock closing prices,

and German unemployment data. Picard was concerned with detecting two kinds of

changes: first is a change in the spectrum of a time series; secondly she considered a

change in the mean or covariance of an autoregressive process. Matthews, Farewell, and

Pyke (1985) gave an example of change-point problems in survival anAlysis. They con-

sidered the problem of testing for a constant failure rate against alternatives with failure W

rates involving a single change-point. Examples of change-point problems in regression

Lo .t'01 4 ,z r 
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Section 1.2: Two-Phase Regression 3

models were discussed in a number of papers. With three econometric examples, Brown,

Durbin, and Evans (1975) discussed two-phase multiple regression problems. In Esterby

and Elshaarawi (1981), a two-phase polynomial regression model has been proposed for

the pollen concentration in lake sediment cores. Also Beals (1972, Chapter 12) shows a

data set to which a multi-phase regression model can be applied. In this dissertation, we

study change-point problems in regression models, especially two-phase linear regression

problems.

1.2. Two-Phase Regression

Regression models which are composed of two different linear phases have many

applications. As in Brown, Durbin and Evans (1975), it might be suspected that the slope

and the intercept have changed after an unknown point in the sequence of observations.

In some cases, it may be necessary to consider a regression model in which only one of

the parameters changes, while the other remains constant. Maronna and Yohal (1978)

considered a two-phase regression model in which only the intercept term changes and

discussed applications in meteorology.

The two-phase regression model was first studied by Quandt (1958) who proposed

a maximum likelihood method to estimate the parameters in the broken line regression

model. Quandt (1960) also proposed a likelihood ratio test (LRT) to test for a change

in the regression model as opposed to the null hypothesis that the data follow only one

simple linear regression. On the basis of the empirical distribution resulting from some

sampling experiments, he concluded that -2log(likelihood ratio) could not have a chi-square

distribution with the appropriate degrees of freedom under the null hypothesis.

A second approach to the problem of testing for a change in a regression model

is to use recursive residuals introduced by Brown, Durbin, and Evans (1975). Brown.

Durbin, and Evans developed tests based on the cusum and cusum of squares of recursive

residuals, defined to be uncorrelated with zero means and constant variance. They also

considered other techniques based on moving regressions and on the regression models

whose coefficients are polynomial in time. As well, the plotting of Quandt's log likelihood
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ratio statistic (LRS) was suggested. They discussed applications of these techniques to

three sets of real data taken from the field of economics.

Since the 1960's, there has been considerable attention to the estimation of parame-

ters as well as the problem of testing for a change in the regression model. Feder (1975)

showed by example that if the true model contains fewer phases than the assumed model,

the least squares estimators are not asymptotically normal and the -2log(likelihood ratio)

statistic is not asymptotically chi-square. He also concluded that the asymptotic null dis-

tribution of the -2log(likelihood ratio) would depend on the configuration of the values of

the independent variable. Beckman and Cook (1979) further investigated the dependence

of the test on the values of the independent variable and gave critical values for testing

for a change in the regression model by simulation. They used 4-different configurations

of the values of the independent variable, and their results show that this configuration

can have a significant influence on the null distribution of the LRS. They also discussed

differences between the continuous model in which the composite regression function is

constrained to be continuous at the change point and the discontinuous model in which it

is not. Hawkins (1980) pointed out that the inferential theory of the two-phase regression

model depends strongly on whether or not continuity at the change-point is assumed.

Difficulties of this problem are the facts that standard maximum likelihood asymp-

totic theory is not applicable and also the null distribution of the test statistic depends on

the spacings of the values of the independent variable. The sampling distributions of most

of the test statistics described below are quite complicated. Because of this complexity,

most previous work has used numerical or Monte Carlo methods. In 1983, Worsley gave

analytic approximations to an upper bound on the null distribution function of the test

statistic based on an improved Bonferroni's inequality. He considered a general multiple

regression model with a normal random error of constant variance, where there may be a

change in the coefficient vector at an unknown point in the data. Worsley's upper bounds

are much better than Bonferroni's. However it requires considerable numerical work and

sometimes the errors are quite substantial , especially for larser sample sizes.
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This dissertation focuses on the problem of testing for a change in the regression

model when the errors are independently, normally distributed with constant variance.

In this dissertation, two kinds of models are considered. First is the regression model

in which only the intercept changes at some unknown point (Model-I). Secondly, the

model in which both the intercept and the slope change is considered (Model-2). Model-2

is considered without continuity constraint. The nature of the null distributions of these

cases are as follows : In Model-i, if the variance is known, then the LRS is the maximum

absolute value of correlated standard normal random variables. If the variance is unknown,

then the LRS is the maximum absolute value of the ratios of correlated standard normal %

random variables and the square root of a chi-square random variable. In Model-2, if the

variances of the error variable is known, then the LRS is the maximum of correlated chi-

square random variables with 2 degrees of freedom. If the variance is unknown, then the

LRS is the maximum of correlated Beta random variables. In all cases, the LRS is of the

form

U = max U,, I
1 <i <in

where distributions of Uj's vary according to the assumptions. A point of interest is how

to deal with the maximization in the LRS. Since it is difficult to get the exact distribution

of U, Beckman and Cook (1979) suggested a simple bound on the distribution function

based on Bonferroni's inequality "

Pr(U > u) = Pr( U A,) < Pr(A,),
ii

where A, is the event that {U, > u}. Worsley (1983) improved this upper bound by

Pr(U > u) = Pr(U A, )i _ E Pr(A,) - Z Pr(A, nA,+),

In this dissertation, the LRT is considered as the problem of the boundary crossing by

the discrete stochastic process and an approximation to the null distribution function is

derived under mild conditions.
I

Chapter 2 deals with the case that only the intercep" -an change and is organized

lk5
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Section 1.2: Two-Phase Regression 6

as follows. In Section 2.1, the modified LRT (MLRT) to test for a change only in the

intercept term is proposed. Section 2.2 discusses asymptotic properties of test statistics

in the cases of random and fixed independent variables. In both cases, Section 2.3 gives

analytic approximations to significance levels. When the independent variable is random,

the limiting distribution of the modified LRS (MLRS) involves a Brownian motion and

results in Siegmund (1986) are used to approximate significance levels. For fixed values of
,.

the independent variable, an approximation is derived assuming that the variance of the

error variable is known and that the observations of the independent variable satisfy certain

conditions. Since the independent variables are not random in most applications, this case

is the most important and the most difficult one. When the independent variables are

nonrandom, the limiting distribution of the MLRS is not a function of a well-known process

like Brownian motion. However it involves a Gaussian process with nondifferentiable

sample paths. To approximate the boundary crossing probability by a discrete stochastic

process whose limiting process has a non-differentiable sample path, the argument in

Leadbetter, Lindgren and Rootzen (1983,Chapterl2), modified for discrete time by Hogan

and Siegmund (1986), is used. Section 2.4 is concerned with power of the MLRT and

confidencf regions for a change point.

Chapter 3 obtains results like those of Chapter 2 for the case in which both the

intercept and the slope change.

In Chapters 2 and 3, numerical approximations of significance levels and powers of

the MLRT and the results of corresponding Monte Carlo experiments are also reported.

The simulations confirm that the theoretical re-.xltz perform well and demonstrate that

the results derived under the assumption that variance is known also can be applied to

the unknown variance case.

Finally, the Appendix reviews several basic facts concerning the convergence of

stochastic processes and discusses Siegmund's (1986) results which are used in Chapters

2 and 3.



Chapter 2

Change in Intercept Alone

2.1. Models and Test Statistics

Let (x,Yj), j = 1.... m, be a sequence of m pairs of observations such that

y) = o(j)+3x,+, , where ()'s and 3 are unknown parameters and 6j's are independently

and normally distributed with mean 0 and constant variance a2.

Consider the problem of testing the null hypothesis that the data follow one simple

linear regression against the alternative hypothesis that there is a change only in the

intercept term. Then the hypotheses can be described more formally as

H 0 o = c, j=1.... ,m,

H : 3 1 < p< m such that

1= , j= 1...,p,

(j) = 2, jp+ l...,m, V

where c1 02 •,

For the simple case of 0 = 0, this problem becomes a test for a single change in the S

mean of normal random variables with constant variance. Many papers have investigated %

this type of change-point problem, in particulai Gardner (1969), Hinkley (1970), Hawkins

(1977), Siegmund (1986), and James, James, and Siegmund (1987). Now if there is a

covariate which has a constant effect on the yj's, the two-phase regression model introduced

above could describe the situation. This kind of two-phase regression model can be used to

describe the relationship between household consumption and disposable income by the

household. Household consumption cannot be explained simply by disposable income of

' ~V ~ \*I V.I. A ~.~* ~. 1~ t'~. ...
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Fig.1.

30 40 50 60 70 80

disposable annualinore (1000 S)

the household. Many other variables such as age, sex, race, and education of the family

head, may also affect the level of consumption expenditures of the household. For example,

consumption patterns according to the age of the family head may be very different. If a

sample survey of a household was made for a period including the year when the children

of the family began to live independently, then the data might be plotted as in Fig.1.

This testing problem was first studied by Maronna and Yohai (1978). They studied

the LRT and also discussed some applications in meteorology. In the next section their

approach and some results will be discussed.

In this section, we derive the LRS for cases of known and unknown a 2 and study the

null and alternative distributions of the LRS. When a2 is known, a2 can be assumed to

be equal to 1 without loss of generality. Then -2log(likelihood ratio) statistic for testing
H0 against the alternative that a change occurred at i is proportional to

I U~~/?f I{ m p Q.,,Qn( - - , - (- -_..- _) IIU.m(i/m) I -
M-t {Q2z - QX(2 - lj)2mj/(m -)I

- lI - I{[1- (±m - ti) 2mi/{(M- i)Q"-..]m/{i(m - i)} }2

{I
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where

M 

M

QZ = (Xj, =X' ~j-i)Y ')

j=I j=I
~~m i---+n ,

= -.QX=.,,), 6 - y, Q -ti, 67 = vie - 4 ,.

Hence the likelihood ratio test (LRT) of H0 against HI can be based on

m I U,,(i/m)

Slightly more generally, we shall consider the test statistic

MI = max I U,(i/m) I , (2.1)'no <i<m

where 1 < mo < m, < m. We will call MI as a modified likelihood ratio statistic (MLRS)

and the test based on ./1 as a modified likelihood test (MLRT). The MLRT was introduced

by Siegmund (1986) who used the MLRS to test for a change in the mean of a sequence

of normal random variables. The introduction of mo and m, in (2.1) can be justified in

terms of the power of the test. Since it is intrinsically difficult to detect a change occurring

near either of the two end points, the LRS pays for its efforts to detect such a change

by having less power at other points. This will be more completely discussed in Section

2.4 with numerical results. Based on the MLRS, H0 is rejected when M, is larger than

some constant. The value of i which maximizes I Umn(i/m) I is the maximum likelihood

estimate of the true change point.

Even though the assumption of normal random errors with known variance simplifies

this problem, theoretical properties of MI are still difficult to characterize. Under Ho,

&i - 6* has a normal distribution with mean 0 and variance [I - (2, - ii) 2mi/{(m -

i)Q..,,,}Jm/{i(m - i)}, and so U,(i/m) has a standard normal distribution for each i.

Hence the null distribution of M1 is the maximum absolute value nf a sequence of correlated

A
- O



Section 2.1: Models and Test Statistics 10

standard normal random variables. The covariance between U,(i/m) and U(j/m) for

i < j is given by

Coy[ U.(i/M), Um/m) ] / M { (i/m)(1 - i/m) I Dm(i/m,j/m)

(j/m)(1 - j/m) -D,(i/m,im)D(j/m,j/m)' I

(2.2)

where

Dm(i/m,j/m) = 1 - (2m - 2)m/- [m - j)Q..,m ] for i < j.

The derivation of (2.2) will be given in the following section. The null distribution of f11

depends on the zj's only through this covariance structure of {Um(i/m)}, not on a. /3.

Under the alternative, Um(i/m) is normally distributed and Cov[ Urn(i/m), Um(j/m) I

remains same as under the null. But now U(i/m) has non-zero mean for all i, which is

given by

E(Um(i/m)j i(1 - p/m)Dm(i/m,p/m) (a2 - al), i _<p

{i(1 - ilm)D,(i/m, i/m)}2 (2.3)

= p(1 - i/m)D,(i/m,p/m) >

{i(1 - i/m)D,(i/m,i/m)}
j 2

So the alternative distribution of M. depends on the unknown parameter a2 - a, and the

unknown change point p. One interesting property of the test statistic is that a nuisance

parameter p is present only under the alternative. This property makes analysis difficult

since the standard chi-square approximation of -2log(likelihood ratio) can not be applied

in this case.

If a2 is unknown, the LRS is proportional to
Lw

m 2 i 2 1 QZ 'IM(P - 9) - Q, ,,( m -2i) I
max

1<<, im-tJ {[Qrm - QI.,(, m - l) 2 mi/(m - i)](Qy.,,m Q ,/Q )2

= max IU(i/m)I/I,l<i<m

where & = (Qyv,, - Q Q Q.,,n)/m. ]
~ R*~4 ~ v\. *~~~' V.. V.W . -
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Again we consider the generalization

M2 = max I U.(i/m) l/o= max I U,(i/m) ,
,,,o5i< , mo<i<m1

where &,, (i/m) = U,(i/m) /d,

Under Ho, U,(i/m) has a standard normal distribution and &2m has a chi-square distri-

bution with m-2 degrees of freedom. Since U(i/m) and & are not independent in general

and the distribution of U(i/m) depends on the zx's through the complicated covariance

structure, it is difficult to find the exact distribution of M2.

The dependence of test statistics on the values of the independent variable is one of f

difficulties that must be handled as well as the maximization involved in the definition of

the test statistics. By simulation, Beckman and Cook (1979) pointed out that the influence

of the configuration of the values of the independent variable is non-negligible and the

percentiles of the test statistic increase as the variance of the configuration increases.

In the following sections, we will study the asymptotic behavior of the MLRS, especially

behavior of the significance level, and will discuss the effect of the spacings of the values

of the independent variable.

2.2. Asymptotic Behavior of Test Statistics

In this section, we study asymptotic properties of test statistics when the indepen-

dent variable is random as well as fixed. The regression model which involves a random

independent variable was introduced by Maronna and Yohai (1978). This model is appro-

priate when the dependent variable may undergo a systematic change at some unknown

point, while the independent variable does not change and affects the dependent variable

through the correlation between the independent and dependent variable. Maronna and

Yohai gave an example of such a situation in meteorology, as follows. Let x and y be two

nearby meteorological stations. The measurements might be mean annual precipitations

and it might be desired to test the hypothesis that the only fluctuations are those due to

the intrinsic randomness of the magnitude being measured. against the alternative that

*1



Section 2.2: Asymptotic Behavior of Test Statistics 12

a systematic change has occurred at one of the stations after some point, due to unregis-

tered changes in the measurement apparatus or the location of the station.

In Section 2.2.1, we study the case in which the independent variable is random. Also,

the asymptotic behavior of the MLRS is considered conditionally on the x1 's. Section

2.2.2 deals with the case of fixed values of the independent variable. Starting from the

special case where the values of the independent variable are uniformly spaced, s 'hey

would be if the independent variable is time and observations are made at equal intervals

of time, we study the limiting behavior of the MLRS under a mild assumption about the

empirical distribution of the independent variable. In Section 2.1, the LRS was derived

assuming that the 3 's are identically and normally distributed. The asymptotic results to

be discussed in Sections 2.2 and 2.3 holds even in the case of a general error distribution.

2.2.1. When the independent variable is random

Maronna and Yohai (1978) considered the case in which both the independent and

dependent variables are random and they studied the limiting distribution under the null

hypothesis. Since the LRS does not depend on the slope under the null hypothesis, the

independent variable can be taken to be independent of the dependent variable. They gave

the percentiles of the LRS when (x, y) has a bivariate normal distribution with 0 mean

vector and identity covariance matrix, obtained by the Monte Carlo method. Their main

result is about the limiting distribution of the test statistic, which will be stated in the

following theorem. It was shown that the LRS tends to oc as m - o in their paper. Here,

we consider the MLRS and show the convergence of the MLRS in distribution. Basically

this theorem was proved by Maronna and Yohai, but their proof is not complete in some

of the details concerned with the convergence of the stochastic process. In our proof, we

consider the "convergence in distribution" in the space C = C[O, 1] of continuous functions

on [0, 1], equipped with a o-field C and the uniform metric.

Notation. Let W(i/m) be a discrete time stochastic process defined at i = 1..., m.

Then Wc denotes a process which is continuous in [0, 1], equals W at i/m (i = 1,...,m)

and is linear in each interval (i/m, (i + 1)/m).

I!,.
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Lemma 2.2.1.

Let {v.} be a sequence of i.i.d. random variables such that E[Vj2I = 1. Define

W,,(i/m) = (Vj - f,,n)/Vi, where vi (E*=, vi)/i. Then as m --- oc,

c - W °  in distribution, (2.4)

where WO is a Brownian bridge process.

Proof : Define W,(i/m) = fii/-/'m and W,(t) to be a continuous process constructed

by linear interpolation. By Donsker's Theorem, W, -. W in distribution, where W S

is a standard Brownian motion. Since a mapping H such that H(W',) = 1'1,
'c and

H(W) = WO is continuous, by the continuous mapping theorem of weak convergence,

(2.4) holds. I

Theorem 2.2.2.

Let (z 1,y 1 ),...,(Xv,Ym) be i.i.d. random variables such that E[z1
2] < 00 and

E[y, 2 1 < oc.

Under H0 . as m -- oc and i/m t

Umn(i/m)= U'm(i/m) 147W(t) in distribution,{(/)1- i/m)} {t(1 - t)'a,

where W ° is a Brownian bridge process.

And so, as m -0 0 and mr,/m -. ti for i =0, 1,

M, = max -. max I in distribution. (2.5), <<m (i/M)(l - i/m) 11:5<11t {t(1 -t)}

Proof :

(i) Note that U°(i/m) can be rewritten as

[B,(ilm) - B,(i/m)Qxpm/Q..,m]/ {D(i,'m. i/m)}4 ,

"V

V 0;v ~
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where By(i/m) = (fn -qi)i/Vr, '

B.(/)(i., - ,)i/vN, _
Bi/M)(i/m)"

D,(i/m, i/m) = 1 - [B_im)02/{Q /,m(i/m)(1 - i/m)}.
(ii) It may be assumed without loss of generality that Eizi] = E[yi= 0 and Ejz?) =

E[y?] = 1 and = O.

Then the Law of Large Numbers implies that

Qzz.vn/m - 1, QZV,/m --+ 0 in probability.

By the previous lemma.

B'-- W1, B'- W2 in distribution,

and hence

Dm - 1 in probability,

where WVO and W2 are two independent Brownian bridges.

Then the continuous mapping theorem implies that as m -- oc,

U- i'C ° in distribition.

(iii) Using the continuity of the mapping from Z to maxt&_<t_<i IZ(t)Il {t(1 -t)}j for Z E C,

max I U°'C(t) - max I WO(t)1 in distribution, as m x.'°< -< t(1 - t)12 (o,, t(j - t)} 12-

(iv) However, since

max (01 0 max I ,,( /M
'°<'" {t -- "°<'-< 1(/m)(1 - ilm)}!'

we still need to show that for any positive e,

Pr( max U0 ()I max >Ui/~ C < C.to<,<' {i(l - t)} mno<m_< {(i/m)(1 - i/rn)} "')

By the definition of U°,c, this is easily obtained. Then by (i),(ii),(iii), and (iv), the proof %

is completed. I

5°,



Section 2.2: Asymptotic Behavior of Test Statistics 15

Corollary 2.2.3.

Under the same assumption as in Theorem 2.2.2,

M2 = max U°(i/m) I - max W°(t) I in distribution.
°<'< (i)(- ) to<<

Proof: Since &2 is a consistent estimator of o2 and Ml2 = MI&, M 2 converges to the

same limit as in (2.5) by the Slutsky's Lemma. I
S

Now we will consider the conditional test for HO. This conditional test is based

on the same test statistics. Al, or M2, but the rejection threshold depends on the z3 's,

which are ancillary. In the following theorem, the asymptotic behavior of the MLRS will

be considered conditionally on the xj 's when the z,'s are a random sample from some

distribution.

Theorem 2.2.4.
..

Let v' = (Z j, ), j 1. m, be a sequence of i.i.d. random vectors such that

E[v,] = ti, and E[vjv] = S.

Under H0 , as m -. oc and mi/m -- ti for i = 0, 1, conditionally given z 1 ,z 2 ,

M, = max I U(im)I -. max I WO(t) I in distribution,'-
M< {(im)(1 - {o<t t(1 -/))2

with probability 1. 9--

Proof: This theorem is proved by basically the same argument as in the proof of Theorem

2.2.2. Note that N.-"

{(Jim)(1 - ) {(i/m)(l - m } {(il - /

.°



Section 2.2: Asymptotic Behavior of Test Statistics 18

where

S,= '(, - ,3z3 - &),
j=1

B. (I", - i /v'-m, 43 =

Z,.(i/m) = [Si - S,,i/m]/1v'-D,(i/m, i/m)],

R,(i/m) (0 - 3)B:(i/m)/Dm(i/m, i/m)

D,(i/m, i/m) = 1 - [Bz(i/m)]2/{Qz,,(i/m)(1 -

Then a.e. in z, as m - ,

(i) Z, - W 0  in distribution,

(ii) maxM oi<,mj Rm(i/m) - 0 in probability,

(iii) For any positive e,

Pr 1 I ZMi) I_________I
r max _ - max Z%(i/m) }It0 <t<t2 2' - {i/n)1 -i/)J

Combining these results, proof is completed. I
I.

In proving Theorem 2.2.4, the necessary properties of the z's are

(Z x,)/rn - a and (EZ)/m - b a.e.
j= 31

In particular,

.mf -t - 0  as m -- oc and i -. .

By the Theorems 2.2.2 and 2.2.4. it can be said that if the values of the independent

variable are from some distribution, then the test statistic converges to the same limiting

distribution whether we consider the test as the conditional or the unconditional one.

2.2.2. When the independent variable is fixed

In the previous section, we considered a case where (zx, y) has a bivariate distribution

such that E[xz] < oc and E[y,] < oc. As a conditional test, we needed the convergence

of the first and second moments of the independent variable to get the above limiting

r .

N,~
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distribution. However, the independent variable is fixed in most applications and does

not satisfy this condition in general. This section deals with asymptotic properties of

the MLRS when the independent variable is fixed. We begin with the case in which the

values of the independent variable are uniformly spaced. If zt = j/m for j = 1 .. ,

then t, -Ii = (1 - i/m)/2 0 any more and so the limiting distribution is not the same

as in the previous section. First, we shall assume that a2 is known and hence without loss

of generality equals one. Under the null hypothesis, we can write Uo(i/m) as a weighted

sum of C,'s to prove Theorem 2.2.6:

k=I

where

(M - ,,)( - , 1 10.
ai.k k < i .

t-(Z --- - k > i{mD, (i/m, ilm)} m ,

Din(i/m,j/m) 1 - (, - ))(± - /{Q.(m - j)} for j > i.
(2.6)

Lemma 2.2.5.

Let n > 2 and {Xm = (X,,,,..., X,)} be a sequence of random elements of
xn=.Ck, (where C? = C[O, 1]) equipped with a product a- field x=.. 1 Bk.

The sequence {X,} is tight if and only if the n sets of marginal distributions,{XI.},

{Xn,,}, are tight in Cl,...,Cn.

Proof: Suppose that the sequence {X. = (X 1 ,, ... ,Xn,m))} is tight. Then there exists

a compact set K in X=Bk such that

Pr{Xj E K} > 1 - c for all X3 E {X,}.

Let hi be the mapping that carries the point p = (pl,• .,pn) in x= 181 to p, in B, for

i = 1....n. Since hi is continuous for all i, K' = h1K is compact and so h-'K' D K.
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Then

Pr{Xi, E K'} = Pr{Xj E h, 1 K' } > Pr{Xj E K) > 1 - c,

which implies that the sequences, {Xi,m),..., {X,,,} are tight.

Conversely, suppose that {X,m }..... {X, ,,,} are tight sequences of random elements.

Choose a positive E. Then for each i, there exists a compact set K, in 8, such that

Pr{X, E K,) > 1 - c/n. for all Xj, E {X3,,,}.

Let K = nln 1 Ih-'K,. Then K is compact and

n

Pr{Xj E K} 1 - Pr{X,,j € K,} > 1 - e for all X, E {X,}.

Hence {Xm} is a tight sequence of random elements. [

Theorem 2.2.6.

Suppose that z, = jiM for j = 1 M.... m.

Under H0 , as m -- oc and m,/m . t, for i = 0, 1,

M, = max I Um(i/m) [- max I U(t) I in distribution, (2.7),no_5<_<M to5t<tj

where U is a Gaussian process with mean 0 and a covariance function,

{t(1- S) 2 D(s, t) .

Coy [ U(t). U(s)] =I -0 {D(t,t)D(s,s)

= o(t, S),

where D(s,t) = 1- 3s(1 - t) for t <s.

Proof: Recall that

Z.(i/m) Rm(i/m)

Um(i/m) ={(im)(1 - i/m)}1  {(i/m)(1 - i/m)}

where Zm and R, are defined in the proof of Theorem 2.2.4. By Theorem A 1.1, to show

that Z - R1 converges in distribution, we have only to check that the finite dimensional

distributions converge in distribution and the sequence is tht. It can be easily shown

,-,""-.,, ." .
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that {Zc} and {Rc} are tight. To prove the finite dimensional distributions of Zc - R:

converge to those of U° where U° is a Gaussian process with mean vector 0 and covariance

matrix A to be defined later, we will show that for any sets of..... r,") and (i. ... i,,)

such that (i/m... i/m) - (t .... ,tf) as m - oo,

n n

E[exp{i Z r(Z (ik/M)- R (ik/M))}] - E[exp{i Z rkU°(tk)}] as m - oc.
k=1 k=1

By using (2.6),

E[expf i 1: rk(Zrn(ik/M) -Rc.(ik/rn))}] = E[expli 1: E kje;1
k=1 k=1 j=1

= E[exp i(b'e)],

where b = (bj,...,b,,) with b = ai.j, and C = (, .. ,). Now elementary

algebra shows that

Zb - r'Ar,

where r' = (rl,. . ., r,) , and A is a matrix whose (k, I)-th entry is a(tk, t){tk(l -tk)tl(l

tl}.Hence this implies that

(Zc (i/77) - Rc(ii/m),. Z ,(i./m) - R' (i./m))

- (U°(t 1),...,U°(t,,)) in distribution.

Now tightness of the sequence {Z, - R) follows from Lemma 2.2.5 and Lemma 7

(Billingsley, 196R). Thus Zcm - R' converges to U° in distribution.

By the continuous mapping theorem,

{-m i U°(t) - in distribution.

It is evident that U°(t)/{i(1 - t)}1 is a Gaussian process. Since a Gaussian process is-I

completely determined by mean vector and covariance matrix, (2.7) holds. U .f,-

Now we will generalize this result to the case where x, = f(j/m) for some integrable S

function f.

%e
!F.~t
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Lemma 2.2.7.

Suppose that x, = f(j/m) j = 1....m, for some integrable function f such that

f(o) = o and f(1) = 1.

Then for i <j, as i/r-*t, j/m -- s, M - 00,
'II

CoyU(i/m), Um(j/m)]{(i/m)(1 - -j/m) D ,(i/m,jlm)
(j/rn)(1 - i/rn) {Dm(i/m, i/m)Dm.(j/m,.j/m)})

where

g,,,(i/rn) = (±( - )1(Q - m) ),

D,,n(i/m,j/m) = 1 - (i - t,)(2,n - i,)mj,/{Q.,(m - j)}

= 1 - (j/m)(1 - i/m)g,(i/m)g,,(j/m) for j > i

-t(1-s) j D(t, s) (2.8)

-ts(1-t)J {J(t, t)D(s, s)} 2

whereg(t) = f f(u)du - f(u)duJ/t P

(1 - t){ff f 2 (u)du - [fg f(u)du] }

D(t. s) = 1 - s(1 - t)g(t)g(s) for s > t.

Proof: First we will derive Cov [U,(i/m), Um(j/m)] for i < j. Note that UM(i/m) can p

be written as

((gm - - (±vn - ,)Q,,.,,I' ,,. 1j n { .I,m, i/m)( m - i(mi)

Assuming the e,'s are normally distributed with mean 0 and variance 1, it can be easily

shown that 1'

(2, - 2,) ( 1-) -,±)IQ.X, M  ( ,, , /Q.,,,)

where 0 =

Also it is straightforward to show

Coy [ - - = (m - j)/(m.i. 0

Ii!

i ." %

, . . l ll : .- l l i-.+il i~i li' ili~ll l:: :- i 1 , -m •
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'V

Thus w
f (i/m)(1- j/m) Dm(i/m,j/m)

Cy(i/m), UM(j/m) 1 IinCe{n (j/m)(1 i/rm)5 {Dm(i/m, i/m)Dn(j/rm,j/rm)}I
Since

-, - , f f(k/m)/m - f f(k/m)/i ..
k=1 k=1

and

f m 2 (k/m) f f(k/m)]/,

k=1 k=1

it can be easilv shown that g(i/m) - g(t) as m - oc, i - oc. Then (2.8) follows

immediately. I

Lemma 2.2.7 says that the test statistic depends on the x1's only through the function,

gm. When x3 = j/m, gm(j/m) = v/3 for all j. The same argument as in the proof of

Theorem 2.2.6 leads to the following theorem.

Theorem 2.2.8.

Suppose that x. = f(j/m) j = 1,...,m, for some integrable function f such that

f(0) = 0 and f(1) = 1.

Under H0 . as m - oc and m/m t for i = 0,1,

M, = max I U,(i/m) -- max I U(t) I in distribution. (2.9)

mostsrnI t0 <t<t1

where U is a Gaussian process with mean 0 and a covariance function

{t(1 - s) D(s,t)
Cov [ 17(t),U(1 -t) {D(t, t)D(s, s)} 2J

= ':'I

where D(s,t) = 1 - s(l - t)g(t)g(s) for t < s.

Corollary 2.2.9.

Under the same assumption as in Theorem 2.2.8, ',

M2 max Um(i/m) j -- max I U(t) in distribution.
MOSISMt 0 <5t<t1
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Remark 2.1. Comparing with the case in which the independent variable is random, we

see that D(t, s)/{D(t, t)D(s, s)}i is an additional factor in the covariance of the limiting

process. Since the mean and variance remain the same, the configuration of the values of

the independent variable affect the distribution of the MLRS only through this additional

term in the covariance function.

Remark 2.2. Since the limiting distribution of the MLRS in (2.5) involves Brownian

motion, the stochastic process in that limit has non-differentiable sample paths. In the

case of the fixed independent variable, U in (2.7) also has non-differentiable sample paths.

2.3. Approximations to Significance Levels

As described in Section 2.1, the exact distributions of the test statistics are quite

difficult to analyse. In this section, we give approximations to the right-hand tail of

the null distributions of M, and M2 and perform Monte Carlo experiments to see how

accurate these approximations are. As in Section 2.2, we first consider the case in which

the zj's are random and then the case where the x,'s are fixed. In both cases, we study

the significance levels as boundary crossing probabilities by discrete stochastic processes

with nondifferentiable sample paths. Approximations to significance levels are derived for

the MLRS with known variance. MI, and will be discussed how well this can be applied

to the unknown variance case.

2.3.1. When the independent variable is random

When the independent variable is random, Theorem 2.2.2 shows that the MLRS, MI.

converges to
WO(t)

max ° 1 in distribution,to<5,<tj {t(1 - t)} 2

where WO is a Brownian bridge process on [0.11 and m,/m - t, for i = 0, 1, as m - oc.

Thus the significance level of the test, Pr{MI > b}, can be approximated by that of this

limiting distribution. Siegmund(1986) provides the approximation to

Pr{ max 1W°(t) I/{t( l - t)} >b}. -
" <,<1 I

S.'
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which is quite general since it can be applied also if the underlying distribution of the

observations is not normal. However Table 1 shows that this approximation overestimates

the actual values about 200 %. In Table 1 and in other tables, we obtained the percentiles

by a Monte Carlo experiment using simple random sampling with 10,000 samples for each

situation. As a correction for discrete time, (19) in James, James, and Siegmund (1987)

was used and that result is also summarized in Table 1. This discrete approximation does

not perform perfectly but it gives a rough idea about the significance level.

Table 2 concerns the MLRS with unknown variance, M2. Using (21) in James, James,

and Siegmund (1987), a similar kind of result is obtained. The numbers in parenthesis

are the approximations to the significance levels of M 2 using the approximation derived

for the known variance case. This gives some insight about whether the approximation

derived for the known variance case can be applied to the unknown variance case. Since

in the next section we will derive an approximation to the significance level of M1 when

the independent variable is fixed and see how that works for the unknown variance case,

we will discuss this more later.

2.3.2. When the independent Variable is fixed

As we can see in Theorem 2.2.6 and Theorem 2.2.8, the limiting distribution is

not a function of a Brownian motion but involves a different Gaussian process when

the independent variable is fixed. In this section, in order to get an approximation to

the significance level of MI, we begin with the case where x. = j/m and later consider

more general configurations of the independent variable. In principle, Durbin (1985) gave .

approximation formula to the probability of boundary crossing by a continuous Gaussian

process satisfying some conditions. However as before these are not accurate since these Va

did not take discreteness into consideration. S

The main result of this section is a new approximation taking discreteness into ac-

count, Assuming the normality of the error variable, we can consider the significance

level of M, as a boundary crossing probability by the Gaussian process, Urn, defined

on {i m0 < i < ml}. As discussed before, our Gaussian process is nonstationary and

- S¢ 3.' .',N -b'/. '.' .' 
"

.. _' ' .. '.,..,', ' .'_." .'-.. .' ''.'.."".'.'..'-" . .'.."-.' '-'-' " .. . .... .. . , . - .... -.-.. - . .,-, .
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nondifferentiable. To approximate the boundary crossing probability by the discrete

stochastic process whose limiting process has a non-differentiable sample path, the ar-

gument in Leadbetter, Lindgren and Rootzen(1983, Chapter 12), as modified for discrete

time by Hogan and Siegmund (1986), will be used. We start with the given discrete

time Gaussian process and derive an approximation to the boundary crossing probabil-

ity by this discrete process as the sample size gets large. In Leadbetter, Lindgren and

Rootzen (1983, Chapter12), their goal is to approximate the boundary crossing proba-

bility by a non-differentiable continuous Gaussian process. They considered the prob-

ability of crossing the boundary by the given process at discrete instants of time first

and let the interval of each time points get smaller and smaller . Actually we get the

same result if we consider the continuous limiting process and find an asymptotic ex-

pression for the boundary crossing probability by this limiting process observed only at

the discrete instants of time. From Lemma 2.3.1 through Theorem 2.3.5, it is assumed

x. = j/m for j = 1..., m, and to obtain nontrivial limits as b -. oo, we use the normal-

ized process, U.,(i) = b(Um(t + i/r) - b), where b2 /m - a. In order to state approxima-

tions to the significance levels in Theorems 2.3.5 and 2.3.7, it is helpful to introduce the

function

v(x) = 2x - 2 exp{-2E n - ' 4(-2rn )}, (z >0) (2.10)
n=1

where 4 denotes the standard normal distribution function. The function v was used

by Siegmund (1985) and is easily evaluated numerically by (2.10) or approximately as

suggested in Siegmund (1985, ChX).

Lemma 2.3.1.

Suppose that z = j/m for j= 1..., m.

Let Utm(i) = b(Um(t + i/m) - b), and suppose m - o , b - oc so that b2/m - a.

Then, the conditional distributions of Ub,,,(i) given that Ubm(0) = x are normal with

[6m(,) - IUbm(O) = z] = -w ,(t)i + o(), (2.11)

Cov x,) - .' - xU,,,(j) -IU(O) =] 2Pao ) min(i.j)+ o(l), (2.12)

V) ,U (
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where u.( t ) = a/[2t(l - t){1 - 3t(I - t)}].

Proof : Using Taylor series expansion of covariance functions and doing a tedious calcu-

lation, (2.11) and (2.12) are obtained. 1

The first step in our derivation to the distribution of M, is to consider the maximum

taken over a fixed number of points, 1, t + 1/r,...,t + n/r.

Lemma 2.3.2.

For fixed n and a, as b - c and m -- oc.

Pr{ max Um(t + i/m)2 b)- b )  I + H.(t,n), (2.13),
O<i<n -o +

where

H(t,n) exp(-z)Pr{ max Y.(i) > x}dx,o<i<n a.
-00 - f

and Yt(i) is a partial sum of i.i.d. random variables with

aY(1 , (-/4a(t), 2.(t)). -.

Proof: Since the conditional distribution is normal, it is determined by its mean and

covariance. Then the previous lemma implies the limiting process can be represented by

Y/t(i) = a.(t)W(i) - ua.(t)i,

where TV is a standard Brownian motion and aa(t) = 2pa.(t).

Then, following the same argument in Lemma 12.2.3 of Leadbetter, Lindgren, and Rootzen 4 .T

(1983), (2.13) holds. I

Lemma 2.3.3.

There exists a function H.(t) such that

lim Ha(t, n)/n =H.*(t) uniforrr~v in t

-U
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Asb- oc and m - oo,

Pr{ max U(i/m) > b)/ [b(b)]-- H:(t)dt/a. (2.14)

Proof: Let
Bk { max U,(i/m) > b)

= max U(kn/m + i/m) 2! b}

Then it can be shown that
K,

Pr{ max_ U,(i/m) >_ b} E P{Bk},
t0Q5/72<t k=Ko

where [Konj = io, LKinJ = ml, and Lxj denotes the greatest integer which is less than

a,.

By Lemma 2.3.2,

Z P{Bk)} - [(b)/b] 1 [1 + H,(kn/m,n)]
k=Ko k=Ko

K,

f b(b)[1/na + 1 Ha(kn/mn)/b2].
k=Ko

And thus

Pr{ max U,,,(i/m) > b}/[bp(b)]
to!i/m<ht

K,
- 1/na + E Ha,(kn/m, n)/b2

k=Ko

', 1/na + H(t, n)dt/(na)

The proof is completed by letting n - oc and proceeding as in Lemma 12.2.4 of Leadbet-

ter, Lindgren, and Rootzen (1983). 1

The last step is to evaluate H.* in (2.14). In evaluating H.*, we use the argument

in Siegmund (1985. Ch VIII), which leads to the derivation of the boundary crossing

probability by a random walk with unit variance. b

*i1
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Lemma 2.3.4.

H=(t)dt/a = .(t)v[2p' (t)] dt /a, (2.15)

where
M.(t) = a/[2t(1 - t){1 - 3t(l - t)}],

,(t) = {(t)12}.

Proof: Note that

H.(t,n) = exp(-x) Pr{ max Yt(i) > x}dx,
oo O<t<n

where Ya(i) is a partial sum of i-i.i.d.random variables defined in Lemma 2.3.2. Let

Yt"(1) = Y.(1)/a(t) to make the variance equal to 1.

Then the Wald's likelihood ratio identity implies that

HI(t, n) = exp[ya.(t)] Pr{ max Y1t'°(i) > y1}dy,"oo<i<n .,

= Ora(t) J E,.[exp{-2pu:(t)R,} : Ty < n]dy,

where
Ty = infln > 1: Yt *(n) > y},

Ry = Yaj"(TY) - Y.

Hence it suffices to evaluate the limit as n - oc of

n - ' E,.[exp{-2,u:(t)Ry} : Ty <5 rndy. ;
(0

By the same argument in Lemma 3.4 of Hogan and Siegmund (1986), this is approximated

by pz (t)v[2p*(t)], as n - oc. Therefore (2.15) holds. I

By combining Lemmas 2.3.1, 2.3.2, 2.3.3. and 2.3.4, we obtain the following approxi- %

mation to the tail of the distribution of the maximum, Al = maxmo<,!<m UM(i/m), over %

an interval [mo, m].

. -,. ,. . .,- -, _. ...- -,. ,,-., ., .. , ., . ., .... . .. .



Section 2.3: Approximations to Significance Levels 28

Theorem 2.3.5.

Assume that b -. o, mo - 00, m1 -. 0, and m - 0 in such a way that for some

0 < to < t < 1 and a > 0

m,/m-tij, i=0,1 andb 2/m -a.

Then as m - 0c,

Pr{ max U(i/m) > b} - bO(b)j v[2ya(t)]p.(t)dt/a,"0o_<<ml

where
pa(t) = a/[t(1 - t)J1 - 3t(1 - t)}],

*(t) = {u(t)/2}r/2.

Remark 2.3. When xj = j/m, j = 1-..., m, the significance level of the test can be

approximated by

Pr{ max IU(i/m)l > b} - 2Pr{ max Um(i/m) > b}
05i~ml O<iml-

Ptj

- bo(b) 2jAt(t)v[2M(t)]dt/a. (2.16)

Table 3 gives an indication of the accuracy of (2.16). As before, percentiles of M 1 , bl,

were obtained by the same kind of Monte Carlo experiment. Table 3 also indicates that

the approximation (2.16) can be applied to the unknown variance case. In Table 3, b2 are

the percentiles of M 2 for various sample sizes and it can be said that approximations are

reasonably accurate if sample sizes are big enough and a < 0.1. Since the case ofzj = j/m

can be applied to the regression model in which z are equally spaced time points, which

arises often in statistical analysis, we provide in Table 4 the tail probabilities of M, when

xj = j/m under H0 .

In the remaining part of this section, an approximation to the significance level for a

general configuration of the values of the x,'s will be derived and numerical results will be

presented. Proofs will be omitted since they follow closely tho!c of the previous theorem.

q.' , W* ' .,'.:.:. ,'-'--'.'' ,,' '-',:'-.-...."...0.....- "'.....",'-'f. -:', ''
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Lemma 2.3.6.

Suppose that z. = f(j/m), j 1,..., m, for some integrable function f such that

f(O) = 0 and f(1) = 1.

Then as m - co and b - oo in such a way that b2 /m -. a,

EU .m(i) t(4,(O) = ZI - -j(t)i, (2.17)

Coy [U m(i) - z, Ub.,m() - ZIUbm(O) = z] -. 2 pa(t) min(i,j), (2.18)

where ui,(t) = a/[2t(1 - t){1 - g2(t)t(1 - t)}], and g was defined in Lemma 2.2.6.

Proof : (2.17) and (2.18) directly follow from a long calculation. I

Theorem 2.3.7.

Suppose that zj = f(j/m), j = 1 .. , m, for some integrable function f such that N

f(0) = 0 and f(1)= 1.

Assume that b - oc, mo - oc, mi --- c, and m -. oo in such a way that for some

0< to < t 1 and a >0

m,/m- ti, i- 0.1 and b2 /m- a.

Then as m -- oc,

Pr{ max IU.(i/m)l > b}
mO <i_<,n1

bO(b) j v[2#us(t)]/[t(l - t){1 - g2(t)t(1 - t)}Idt, (2.19)

where p.s(t) = {a/[t(1 - {1 - g(tlt(1 - /2

Table 5 supports that the theoretical approximation (2.19) is quite accurate when N

Xj = (j/m)2 . In Table 5, p, is obtained for f(z) = z 2 . and p2 is the approximation using

the linear interpolation of the z2 's as f. We get the percentiles for unknown variance case

bv Monte Carlo method and approximates significance levels using the approximation

formula derived for known variance case. Even though they are not perfect, a rough idea %

about the tail probability can be obtained from them. B
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2.4. Powers and Confidence Regions

In this section we follow the arguments of James, James, and Siegmund(1987) to

obtain an approximation to the power of (2.1). We derive an approximation of the power

of (2. 1) for the fixed x3 's, starting from the uniformly spaced z2 's. Suppose that we observe

Y ... ,/rn as in section 2.2 and zj = j/m for j = 1....m, that there is exactly one

change point, p, only in the intercept term of the regression line and that Q1, a2, and 3

are unknown parameters. In order to get an intuitive idea of the boundary crossing by the

given stochastic process, we consider a modified stochastic process and a curved boundary

as follows. Let U;(i) = Ur(i/m){i(1 - i/m)}2. Then from (2.2) and (2.3) it can be easily

seen that the process U;(i) (i = in0 ,.. .,m ) has the mean value,

E[U (i)] = i(1 - / Dm(i/m,p/i) 02 - a1 ), P

= p(1 - i/m) D ln t (012 - a l ) , i > P. (2.20){Dmn(i/tn, i/m)}l i

and the covariance function for i < j,

Cov [-,(i), Ui(j)) = i(1 - j/m)rm(i,j) (2.21)

where

Dm(i/m,j/m) = 1 - (i,±m - !:)(2m - 2j)mj/Qrn,m(m - j)} for i < j,

r,,(ij) = D,(i/m,j/m)/{Dn(i/m, i/mlDn(./mj/m)}

For< mo< mi <im. let

To = inf{i i > io, I U (i) I> b{i(1 - i/m)}21),

T, = sup{: i < m i, I U (i) I > b{i(1 - i/m)} },

and let Pr('){To < mi} = Pr{To < m:5 m U, (p) = }. The power of the test defined by

(2.1) is of the form. Pr,{MI > b} = Pr,{To S ml}, where mo < p < inl. It is obvious

that

Pr {To <5 ml} = Pr{ I UU,(p) I > b{p(1 - p/m)}),

+Pr I *I < bp(1 - p/n)) , To <5 m
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=Pr{ I U;(p) I : bfp(1 - p/m)}I}

+ Lb{D(I-P/m)} Pr~~1 {To < i) Pr{ U;(P) E d } (2.23)

Since the marginal distribution of U, (i) is known, to approximate (2.23) it suffices to

approximate the conditional probability in (2.23). To approximate Pr('){To < ml} we

may assume that

I IfI = bfp(l - p/m)}2 - X (2.24)

with x 0(1) as m - c, since the principal contribution to the integral on the right.

hand side of (2.23) comes from values of close to the boundary value. Given L,(p)=

of the form (2.24), if I LT, (i) 1 2! b{:i(1 - i/rn)}1 for some Yn0 :5 i < p and I U;,(j) I

b{j(1 - j/m)}i for some p < j 5 inl, this event with overwhelming probability occurs for9

some i and j which are closed to p. Moreover, given U;(p) = , asymptotically as m -~ oc

the processes U;,(i) (i = in0 ... , ,p) and UL (j) (j = p + 1, ... , ml) are conditionally

independent for i and j close to p. Thus we can write

Pr~p){To <i) ml rpfo<p rpf,>p Pr('){~ T< p} (rp~T <). (2.25)

Since both probabilities on the right hand side of (2.25) are of the same form. it is enough

to consider the first one. To approximate the first probability, we assume that m is large

and that p and p -mo are proportional torn.

Lemma 2.4.1.

Let f b~p(1 - pl m)) 2 - r = m~o. For i p, given U; (p)=

as m -. c, p/rn - t', for each fixed i,

U(p- i) - jv~ - i Ip) If{D(',i t)} 2

is distributed approximately as 5, = zjk, where Zk's are i.i.d. standard normal

random variables and u'(p - iI p) =E[U14(p - i) U;((p)= )

where D(t,t*) = 1 - 3t*(l - t*).

INA
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Proof: Since UT(i) is distributed as N(iu(ilp), oa(ilp)) given U;(p) = , where

p(ilp) = rn(i,p)i/p,

a (ilp) = i(1 - i/M) - (rtm(i,p)2i2 (1 - p/m)/p,

it can be easily obtained that as m - oo,

Cov [U (p - i), U (p - j)I U (p) = ]- rnin(i,j)/D(t*,t').

Thus [U;,(p - i) - u(p - i Ip)]{D(t', t)} behaves like a sum of independent normally

distributed random variables, each having mean 0 and variance 1. I

Now we define stopping times rI and ro as follows:

ro" = inf{i : i > mo, U(i) > b{i(1 - i/m)} },

rj = inf{i: i > too, U;(i) < -b{i(1 - i/m)} }.

Lemma 2.4.2.

Suppose that b -. oc, p - oc, m oc in such a way that b/V'W-. b0, and

p/m -, t. Let z = bfp(1 - p/m)}) - =(1).

Then as m -. o,

Pr(p) fro+ < p} v[277]exp[-2yox{D(t',t 1)}], 2C,

and similarly

_r o  < p} = v[2r2]exp[-2tfz{D(t',t*)} ], (2.26)

where i = bo/[2{D(t*,.t)t*(1 - t*)} ].2

Proof: By (2.20) and elementary calculus, it can be seen that for fixed x. i,

b{(p - i)[1 - (p - i)/m}2 - p(p - lip) x + ibo/[2D(t, t*){t'(1 - t.)}!]. |

... ..

.9-
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From Lemmas 2.4.1,

Pr( {T6 < p} = Pr( J{, (p - i) - -
( p - ijp) > b{(p - i)(I - (p - i)/m)}i- (p - iup)

for some 1 < i < p - meo)

-- Pro{S > i77 + x{D(t, t')}1 for some i > 1},

where 7 = bo/[2{D(t-,t-)t-(1 - t-)} ] and Si was given in Lemma 2.4.1. Therefore this

conditional probability is approximately the same as

Pr_ I{S > y for some i > 1},S-I
where S' is a partial sum of the i.i.d.random variables, each having mean -17 and variance

1 and y = x{D(t',t*)} . Following the argument in Siegmund (1986, Ch VIII), this

probability can be approximated by v(2r)exp[-2r{D(t',t)} ], which can be used as an

approximation to the conditional probability in (2.23). 1

Theorem 2.4.3.

Suppose that b -* oc, p - oo, m - oc in such a way that b/v'm - bo, and p/m --.

t'. Then as m - oc,

Pro{MI > b} - [1 -

I 2v(27) _ 2(27)
+ mn- 0(.Y) Lf{ t(l - t*)D(t*,t-)} 2 mi(bo + b{(1--)D(t-,t)

(2.27)

where

= m [b- {t(1 - t-)D(t, t')) ,,

and D and 77 are given in Lemma 2.4.2.

Proof: Note that

Pr(p'){To <p) Pr('){ro+ < p} + Pr(') {ro < p} - Pr() {ro+ < p} Pr{ '){rj < p.

f'bfp(l-p" )} pr(P)To<-'

Using Lemma 2.4.2 and the fact that the major contribution to r{,(-/,)} (To <

P} Pr{U, (p) E d } comes from the probability of crossing t., upper boundary by the

p
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process U,(i) conditioned on U,(p) = which is close to the upper boundary, we get
S

Ibp(1-PIm)) Pr( ){To < P} Pr{U ,(p) E d})

HAI _ exp[-21{b{p(1- p/m)) - }{D(t ° , t*)} Pr{U, (p) E dc)

Using a similar approximation for the other conditional probability on the right-hand side

of (2.27), and evaluating the integral in (2.22) asymptotically as m - oo, we obtain (2.25). <

U

Remark 2.4. When x, = f(j/m) for some integrable function f such that f(O) = 0

and f(1) = 1, we get the same result but with D(t*,t ° ) defined in Lemma 2.2.6.

Table 6 shows the approximated powers of the statistic (2.1) when the x,'s are uni-

formly spaced. For each case of a sample size m=20 and m=40, one sided significance

level 0.025 and 0.5 are considered. A Monte Carlo experiment was performed and shows

that the approximation given in Theorem 2.4.3 is accurate enough. The forth column of

Table 6 involves the LRS with different choices of 6 and p. And the sixth column involves .

the MLRS. Roughly speaking. the unmodified LRS and the modified LRS perform about 4..

the same, but it can be seen that the modified LRS with m0 > 1 and m, < m - 1 has

power which improves over the unmodified LRS at points except those close to 0 or m.

To find a confidence region for p, the method of Cox and Spij~tvoll (1982), discussed

in Worsely (1986) can be used. Let the confidence region D 0 contain all change-points %

that partition the sequence into two subsequences in which we accept the hypothesis of

no further change-points at level a. Consider the tests for a further change-point in two-

subsequences;

H. = ... a (-
)  against "4.

H - 3 1 < k <p such that o(')= (k)$a(k+I)... (P)

and *.4.-,

H + O o((V against

"",

'4~~~~~~" 9 % ~w 44 ~4* ~ ~ . ~~.-4
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Iff~ 3 p+1<k<m such that a(+)=...= O (k)6a(k+l)=...a().

If both of H- and H + are accepted at the combined level a, then we put p in Da.

Let M-a be the equivalent of the test statistic M, evaluated only for the subsequence

of observations (xYl), ... ,(xZ,y) and let M + be the equivalent of the test statistic

M, evaluated only for the subsequence of observations (x,+ ,yp+),. .,(zm,ym) Define
Pr{M,- < b} = G;(b) and Pr{M+ < b} = G+(b). Then

Pr{M-, < bi and M' , < b2 } = Pr{M1  < bl} Pr{M+ < b2 }

-G-(b,)G+(b2)

and so an exact (1 - a) confidence region for p is

= {p: G(~'~~1)G+(M+) < 1 a}.

Asymptotically as m - oc. and p - oc, G-(.) and G+(.) has the same formula and can

be obtained from (2.16).

In the rest of the section, mathematical results about the confidence set of the change

point are stated and the related problems will be discussed. Suppose that we observe

yi,.., y,, and x, = j/m for j = 1..., m, that the hypotheses of exactly one change only

in the intercept of the regression line is true. and that al, a 2. and i3 are unknown nuisance

parameters. Then the likelihood based cc' .trdence set for a change point can be defined

as follows.

For 1 < mo < ml < m and c > 0, define

A(p, c) { max fUm(irnM)] 2
- fU(p/m) 12 < c),

Mo<5i<rn

where U, is the process defined in Section 2.1. "

Although the unconditional probability of A(p,c) depends on both p and (a 2 - a1 ),

inference can be made free of (a 2 - ee) if we condition on the sufficient statistic U(p) =

Uma(p/m){p(1 - p/m)} = . Thus in principle c = c(a,p, ) can be determined by

Pr{A(p,c)1U,(p) = = (1 - a), (2.28) V

Ib
"" "' ' 4 ' ' m'W' l~d |l~l-i a : ll ' |

=
' -: ': " :: ' - "- ' '



Section 2.4: Powers and Confidence Regions 36

where a is a significance level of the test. Then the set of all p such that the sample path

{Um(j/m),j = mo, .. , mi} belongs to A[p, c(a,p, U, (p))] is a (1- Q)100% confidence set

for p. Then

a = Pr{ max IU,(i/m) I b I U (p)=
mO<i<mI

where 6 [c( , p, + 2}

= Pr{To < MI

= Pr) {To < p} + Pr("){T, > p} - Pr(p) {To < p and T, > p), (2.29)

where To and T1 are defined in (2.22). Since the third conditional probability in (2.29)

is negligible comparing to the first and the second probabilities which are usually small,

in order to get a confidence set it suffices to find an approximation to Pr(c'){TO < p}.

This conditional probability depends on how big the difference between the conditioned

value, , and the boundar ,alue at the change point, ±b{p(1 - p/m)} . In this section.

we consider the confidence set when

= b{p(1 - p/m)} - = O(m).

Then

P = Vr( C(To < p}

= Z Pr(;)3{To = n
n=m0  .,

P-1 %

Pr{I UT'('O)(k) < bfk(i - k/m)}r, for all mo < k < nI i "()(n)I =yj

x Pr( ){U U (n) I E b{n(1 - n/m)}) + d}-,

where U"(')(k) is the process U,,(k) conditioned on L,(p) = , andy =

z.

Lemma 2.4.4.

Given that V'() = , as m - oc, n/m - s,p/m - t, = mo. and for a fixed

k, [[,,'(,(n - k) - u(')(n - k n)]{D(s,s)}2 is distributed approximately as sum of
M'4 4,

.4 " - W 'f .
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i.i.d. random variables each of which has mean 0 and variance 1. where

,4()(kl) = k[Ci(k, n, p)o + C2(k, n, p)/n],

Ck (1 - n/m)[r(k, p) - r(k, n)r(n, p))

(1 - (n/rn) - r 2(n,p)(I - p/m)n/pJp/m'

C2 (k, n, p) (1 - n/m)r(k, n) - r(k, p)r(n, p)(1 - p/m)n/p
[1 - (n/rn) - r2(n, p)(1 - p/m)n/p]

r(n, p) = D(n/m, p/m)/D(nlm, n/m)D(p/m, p/rm).

D(n/m,p/m) = 1 - 3(1 - n/m)(p/m) for n < p.

Proof. Since U"P)(n) is distributed as N(u(nlp),a 2(nip)), where

M(nlp ) = rn(n, p)n/p, %.

c2(nip) = n(1 - n/m) - {rm(nP)(1 - p/m)n 2 /P "

it can be shown that

A(P)(kj n) = E ,j(')(k) IU '(P(n) y .

= k[C(k, n, p) o + C2 (k, n, p)y/n],

[o )(kin)]2 = Var ( U'j(')(k) I L*p'n) = y

= k[((k,p)- {C,(k,n,p)}2((n,p)k/n],

where

((k, p) = 1- (k/m) - r2(k, p)(1 - p/m)k/p.

Then direct calculation implies that as m - o,

[a ")(n - k In)]12
- k/D(s, s),

and

Cov--,P)(n - kiyU,.p)(n - k2 ) (n) y] - min(ki,k 2)/D(s,s).

Hence the proof is completed. I

.7 .. *'* *.
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Lemma 2.4.5.

Suppose that b - oc, m - oc, in such a way that n/m - s, p/m - t, and b/v' --

bo. Then

Pb(n, x) =Pr{Um(')(k) < b{k(1 - k/m)1} for all mo < k < n I Um. (")n) = y}

-Pr{Sk >_ x{D(s,s)}2, for all k > 1},

where Sk is the sum of k i.i.d. random variables with mean u and variance 1, and

p = B 1 - B2 o,

B, = bo{D(s,s)}2/[2s(1 -,g)}2,

B 2 = 3(1 - s)(.s/t - 1)n/fm((n, p)D(s, s){D(t, t)}I],

D(tl,t2) = 1- 3t 2 (1 - tl) for t < t2.

Proof. Note that

A(n. x) = Pr{U, ')(k) - pip)(kln) _ Bb(n, k), for all mo < k < n U ')(n) y

where

Bb(n, k) = b{k(l - k/m)} 2 -/4P)(kln).

Since the joint distribution of {[U j,' (n - k) - 4O)(n - k n)]{D(n/m,n/m)}',k =

1,..., n - Mo} given that Un'.(n) = y converges to the unconditional joint distribution

of {Sk, k = 1, ... ,n-mo} and Bb(n, n - k){D(n/m, n/m)}2 k[Bi - B 2 o) - 4{D(s, s)) P,

Pb(n,x) " Pro{S < kfB 1 - B26o] - x{D(s,s)}2, for all k > 1}

Pr, fSk < -xfD(s,S)}2, for all k > 1}

= Pr.{S z{D(s,s)}, for all k > 1}

= {E[S.,+} -Pr,{S,+ _ z{D(s, s)} }A,

where r+ = inf{k k > 1, Sk > O} and the last equality holds by the argument in

Siegmund (1986, Chapter XIII). I
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Theorem 2.4.6.

Assume that b{pl - p/m)) ~ - O=(m) and b - oc, n - oc, p - 00, and m - oc,

in such a way that b/v/-m- bo, n/rn -~ a, and p/rn - t. Then

PT')T< p}

10 exp[-d(n,p)z/apz, p)] Pr.{S,., 2! z{D(-s, s)}fdzR(n, p),

where
R(n, p) = O(d(n, p))p IE,[S,,.4 ],

d(n, p) = [bivz(1 - n/) p(njp)]/oj~njp).

Proof. Note that

PrWI~TO < p}

=Pr~'~{r+ < p} + pr~p){rj( < p) - Pr(P'I{ro < p and T0  < p}.

Since for > 0,

Pr,',{O) < p) Pr~p) I{ro <p P}

=Z Pr~p) Jr. n}

E Pb(n, z) Pr('){U(n) E bf n(1 - n/m)}'2 + dx},

and similarly

pr 2({)(TO < p} Pr~p){(7j < p},

by Lemmas 2.4.4. and 2.4.5 and letting m -~oo,

Pr~p I {To < p}

ca Z PrMfS.,. 2! z{D(s, s)}i}/E[S,+)}dz{IO(d(n, p)+ z)/o(nlp)}

0-1 a,,

t - Z j Pr . {S,+ 2! x{D(s, s))} exp[-d(n, p)x/ea(njp))dxR(n, p),

where d(n, p) and R(n, p) are defined above. I

I
, 7:1Z
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Remark 2.5. If d(n*,p)/[a(n' p){D(n*/m,n'/m)) ] = 2p for some n' at which the

integration has the biggest contribution to Pr'){To < p}, then Pr('){To < p) can be

reduced to , Pr(')f To = n), where the summation is over n which are close to n*, and to

a further simpler form by the argument in Siegmund (1986,Chapter IX).

N

It

°S,.
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Chapter 3

Change in Both Intercept and Slope

3.1. Models and Test Statistics

In Chapter 3, the two-phase linear regression model in which both intercept and

slope terms change will be considered. Quandt (1958) introduced this model. He pro-

posed the LRT to test for this type of two-phase regression model as opposed to the null

hypothesis of the simple linear regression and observed that the LRS doesn't follow the P

standard maximum likelihood asymptotic theory. This type of two-phase regression model

has many applications in econometrics, biology, quality control, and so on. Brown, Durbin

and Evans (1975) give three examples involving growth in the number of local telephone

calls, the demand for money, and staff requirements of an organization. They use recursive

residuals to study the stability over time of regression relationships and discuss Quandt's

likelihood method. Hinkely (1971) studies a small set of data obtained from replicated

experimental determination of the relationship between blood factor VII production and %

wafarin concentration. He applies a broken line regression model with a continuity con-

straint to this set of data. The same kind of example appears in Haddad, Jeng, and Lai

(1987) who use a two-phase regression model to summarize the time course and change in

heart rate during respiratory pauses in puppies and young adult dogs.

We consider the problem of testing the null hypothesis that the data follow one simple

linear regression:
,£

Ho : y a=o+ OX,+,E, j= 1,...,m, against

the alternative hypothesis that there is a change both in the intercept and slope

'A'0

• r .. r • , - - .rv-, €- .V ,. - . - .
. .

.r, #'.," = 4".
°

r" " ,. # .- - @ d
•

- --- .,-- - -. -j -a 
'
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H, 3 l<p<m such that

yJ = a, + O1z) + 6,3 = 1.. p

Yj = 02 +/ 3 2ZI + 6j, j=p+ M... ,

where a, 76 02 and3l 54 02

Unlike Hinkely's model, we do not assume mathematical continuity of the two-phase

regression line and we suppose that a change happens at the p"h data point as in Chapter 2.

In this section, we assume that the c3's are independently, identically normally distributed

with mean 0 and variance a 2 and we derive the LRS for cases of known and unknown a 2

and study the null and alternative distributions of the LRS. When a 2 is known, a2 can be

assumed to be equal to 1 without loss of generality. Then -2log(likelihood ratio) statistic I
for a fixed change point i is proportional to

[9, - -]2Mi/(M i) + [Q2.,IQ..., + Q.I /Q..,,] - [Q.2m/Q.mn], (3.1)

N

where

.i it z.)i xj)/(mn- i),

J=1 0 ~
J=1+

,(Z )i, - i),

j=1 .=t+I

i -

Q = (Xj - ,)(l, - 90,, Qz., = (=, - tI)'y, - 97/
.j=j=+

To get some insight about the distribution of (3.1), we can rewrite (3.1) as

U'

I1 V , (l m/ ) 112 - v, -

% "
, q%- .- ,J*U
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where

= Yi 
4Ji = Qzy,ilOxx,i, 1 Q = O / iQ* 0,i,'

- z+ Iq/ +() (,lQ .+ li ,

ilQZ#,i + , l + 1/ yI

Hence the likelihood ratio test (LRT) of Ho against H, can be based on

max 11 V,(i/m)
l<i<m

As in Chapter 2, we shall consider the modified LRS 0

Af = max 11 V.(i/m) , (3.2)
m0<t<ml I

where 1 < m 0 < ml < m. Based on the MLRS, H0 is rejected for a large value of A13 and

the value of i which maximizes 11 Vm(i/m) 11 is the maximum likelihood estimate of the

true change point. Under Ho, ii has a bivariate normal distribution with mean (0,0) and

covariance matrix E, for each i and so the null distribution of A 3 is the maximum of a

sequence of correlated chi-square random variables.

Here is another expression of the LRS which will be used in Sections 3.2 and 3.3

11 V,(i/m) 112 [V,,,(i/m)]2 + [V2,,(i/m)]2 , (3.3)

where •

V,.(i/m) = [A'(X'X) X' Y]f[A'(X' X,) fAl
It~ -2 1i ti I 1 %_

V'2 m(i/m) = [A'(Xa'X) X Y]I/[A2(Xa X') A2]

Al = (1.-1.0), A' = 1,0,-1),

.N
5%

S.-

• " -,. " " , " L 1' ' "' " ', ' "' ' " I " ... " , "
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1 0 zi 1 z1  0 0

10 z2 - l 0 0

0 1 z.i+ 0 0 1 zj+

0 I Xm 0 0 1 X,

y= (y,., Y.).

From this representation, one sees that Vl.(i/m) is the same statistic as Um(i/m) S

defined in Section 2.1. That is, Vi.m(i/m) is the LRS to test that only the intercept changes

as opposed to the null hypothesis of no change. On the other hand V2 ,m(i/m) is the LRS

to test the null hypothesis that only the intercept term in the regression line changes at

the point i against the alternative hypothesis that both intercept and slope change after

the same point i. It is easy to show that each of [Vlm(i/m) ]2 and [V2,(i/m)] 2 has a chi-

square distribution with 1 degree of freedom and the covariance function of the process

{Vi,m(i/m), i = 1,.. .,m} was given in Section 2.1. For the process V2 ,,, the covariance

between V2,m(i/m) and V,,(j/m) for i < j is given by

oy[ /,.(/m Di(i/re,j/m) (3.4)

Co V,(i/m),V2,,(j/m) ]--, {Dm(i/m, i/m)D,(j/m,j/m)}

where

Dm(i/m,j/m) = 1 - (Xm - 2 -)(2. -*j)mj/[(m - j)Q.] for i < j. S

It is convenient to introduce the notations

A = Coy tli.(i/m), Vl,,.(j/m)I, A12 = Coy [V,m(i/m), V2 ,m(j/m) )l

A21 = Cov [Vlm(j/m),V 2 ,m(i/m)], A22 = Coy V 2 ,m(i/m), V2,m(j/m)]. ,,

One delicate matter is the cross covariance between the two processes Vi,,,, and V2,m. It can ,'"

be easily checked that Vim(i/m) and V,m(i/m) are independent at each point i. However a.'

for different points i and j such that i < j covariance function ib as follows: S ]

~ f a'? ? -. *. . . . . ..a' a?- *1" * a' -. ~
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1  { miQ, }1 ( - i?) (3.5)
(M - ) ,{D,(i/r, i/m)D,(j/m,j/m)}

A\21 = xzmQ- Z(; i (3.6)
J2 t Qxz:mQX } {Dm(i/m,,Im)Dm(j/m,j/m)} "(34

In summary,

Coy [ Vm(i/m),VMU(j/m) ] = 12)

where

12=( 0), A= (

0 1 A21  \ 22

Thus {Vm(i/m),i = 1,..., M} is the two dimensional stochastic process with zero

drift and the covariance function given above. Again the null distribution of M 3 depends

on the zx's only through this covariance structure of {V,,(i/m)}, not on a, I. Under the

alternative, Vm(i/m) has a bivariate normal distribution and the covariance structure P

remains the same as under the null hypothesis. So the only difference of the LRS under

H, is non-zero drift of {Vm(i/rn)}. For convenience we use the notation

a= C2 - C1, A = f32 - 31.

Then under H1 , Vl,(i/m) has non-zero mean for all i, which is

E EV,m(i/n))

_ [(I - p/m)Aj.,{A. + Aq!;) - Aa(2, - <);~ P

{i(1 - i/m)Dm(i/m,i/m)Qxx,M}

= (rn - i) [(p/rn)A,,p{ A. + A>, - -p,

{i(1 - ilrn)Dm(i/m, ilm)QZX.m} '

where

Ai,= -Q m Dn(i/mp/m).
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And for V2 ,(i/m),

- R[(i - p( ;{ + 'a; 0;I i~ <=Q.*1 Xi{,(/,p/)I

Q eQ,i .P(2i - 2P){.A + A't -- 3QZZ'P]

Qaz,, D,(i/m, i/m) }I

So the alternative distribution of M 3 depends on unknown parameters 02 - 01, 32 -il

and the unknown change point p.

If a 2 is unknown, the LRS is proportional to

max 11 V,.(i/m) 11/6

where 6,2 = (Qpn _ QY,m/Qxz,,,m)/m. Thus the modified LRS is

M 4 = max 11 V,(i/m)II / &.

In the following sections. similar kinds of results as in Chapter 2 will be discussed.

We study the asymptotic behavior of the MLRS under H0 for the cases of known and

unknown variance. In Section 3.3, we derive an approximation to the significance level

of M 3 and present simulation results which support the analytical approximation derived

for known variance case, and show that this approximation can be applied for unknown

variance case.

3.2. Asymptotic Behavior of Test Statistics

In Chapter 2, it was seen that the MLRS converges to the maximum absolute value

of functions of Brownian bridge processes or Gaussian processes according to the random

or fixed z3 's, respectively. In the case where both intercept and slope change, we shall

obtain similar results which are extensions of those of Section 2.2. As we can guess from

the form of the MLRS, the limiting distribution is the maximum norm of random functions

involving two-dimensional Brownian bridges or two-dimensional Gaussian processes.

%F
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"l

Section 3.2.1 concerns the case in which the independent variable is random. Also, the

asymptotic behavior of the MLRS is considered conditionally on the z's. As in Chapter

2 we obtain the same limiting distributions whether we consider the null distribution of

the MLRS conditionally or unconditionally. We will deal with the case of the fixed values

of the independent variable in Section 3.2.3. The limiting behavior of the MLRS under

a mild assumption about the values of the independent variable will be studied, starting

from the case where the values of the independent variable are uniformly spaced. Although

the MLRS was derived assuming that the ,'s are identically and normally distributed, the

asymptotic results to be discussed in Sections 3.2.1 and 3.2.2 do not require this normaity

umption.

3.2.1. When the independent variable is random

This section will show similar results as in Section 2.2.1 using Donsker's theorem when

the independent variable is also random. ks in Section 2.2.1, it can be easily checked

that the MLRS does not depend on the slope under the null hypothesis. This implies that

we can take x as the random variable which is independent of y when we study the null

distribution of the MLRS. The following theorem is on the convergence in distribution of

the MLRS when a2 and are known. In this case we may assume a2 = a2 - 1 without

loss of generality.

Theorem 3.2.1.

Let (zi,yi), ... ,(x,,y,) be i.i.d. random variables such that E[xl] = E = 0,

E[z, 2 ] = E[y - 1. and E[zxy] = 0.

Under H0 , as m oc and mi/m ti for i =0,1,

M3 = max 11 VOM(i/m) 11 max 11 W(t) 11 in istribution.

2 - - i dsrbuin,'o ,,,, {(i/m )(1 - l )} to<,<,, {t(i ) o.

where V°(i/m) = VM,(i/m){(i/M)(1 - i/rnl}2, W(t) = (11'C, W°(t)), W° and

140 are two independent Brownian bridge processes.
2
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Proof: Note that

IIVM(i/m)1 2 = [VO(ilm)]2 + EV,m(i/M))2

where

V2
0 ,,,(i/mJ = [B,(i/m) - B.(i/m)(Qx1 ,/Q.,m.)/{ID, ('/m, i/m)}12,

V20m-(i/m) = {1Q ,+ 1Q~j

D,,(i/m, i/rn) I - [B,(i/m)I2 /[(i/M)(1 _-/).."]

B.(i/m) (2 - i.)i/vGi BY(i/m) = (1- Wmi/VNIIT.

(i) Let

Ym(i/m) =B,(i/m)/ {Dm,(i/m, i/m)}+,

so that VIO(i/m) = Ym,(i/m) - Xm(i/m). In Theorem 2.2.2, we have shown that

I'M ~1 in distribution and X, -. 0 in probability.

which leads to

v 14ro in distribution.

(ii) Note that V2milm can be rewritten as

{(Q..,m /rn) - [Z.(i/M)]2 /(i(1 - i/rn)) fX

Since V2 m(i/m) is a function of the partial sum, xj,, Donsker's Theorem can

be used to show that V1, TV20 in distribution in the following way. Let TV,(i/m)

Q~~/m- First we use the convergence of W, to the Brownian motion W4'2 to

show that for any sets of (rl,. .. , r,) and (i, ,) such that (i1 /Mn. . ., i"/m) -

E[expf i 1: -k2m~k E[exp {i+ ,Q*,,)
k=I 1
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'I

- E[exp{i 1: rk 1'(tk)}] in distribution,
k=1

where ci, and c% are appropriate coefficients. This implies that the finite dimensional

distributions of V2,, converge to those of W ° . Secondly, the tightness of the sequence

{V,} follows from the same sort of argument involved in the proof of Donsker's
2. P.

theorem (Billingsley,1968). Hence

2
°  2. in distribution.

(iii) Since V'.,% and Y, are independent and Xm - 0 in probability, it is easy to show

that (Xm,, V, - (0, W° ,WO) in distribution.

Then by the continuous mapping theorem the proof is completed. I

As pointed out in Section 2.2, we obtain the same limiting distribution as in the *1:5

preceding theorem when the variances are unknown.

Corollary 3.2.2.

Under the same assumptions as in Theorem 3.2.1,

.14 = max I V(i/m ) max If "W°(t) 1 in distribution.i n) t5tt t - t)) i

where V°(i/m)= V(i/m){(i/m)(1- i/m)} .

In the following theorem, the asymptotic behavior of the MLRS wil be considered

conditionally on the x)'s when the xj's are a random sample from some distribution.

Theorem 3.2.3.

Let z= (z, ,y), j = 1...m.,m be a sequence of i.i.d. random vectors such that 1

E[zj] and E[zzl] = ( 2

Under H0 , as m --. oc and mi/m - ti for i = 0,1, conditionally given z,X 2 ,...,

M3 = max IIV°(i/m)I - max IIWO(M)II in distribution.
,0<I<m {(i/m)(1 - i/m) {t(1 - t)}

V.
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for a.e. 1, X2," where W°(t)' = (W°(t), W°(t)) and W? and W ° are two inde-

pendent Brownian bridges.

Proof : To prove this, we follow the same argument as in the proof of Theorem 3.2.1. In

the proof of Theorem2.2.4, we wrote VO% = Z, - Rm, where Z, and R, were defined in

Theorem 2.2.4, and showed that a.e. in z

(i) Z, -- W°"1 in distribution,

(ii) max R,(i/m) - 0 in probability.
mo<i<m1

Then similar arguments show that, a.e. in x, as m - oo,

,m W in distribution,

and hence

(Zm, max Rm(i/m),V-2,m) -' (W°,0, W22) in distribution.

Therefore by the continuous mapping theorem, the proof is completed. The independence

between 11° and lVV can be proved examining the limiting behavior of the covariance

functions given in (3.5) and (3.6). 1

Corollary 3.2.4.

Under the same assumptions as in Theorem 3.2.3, conditionally given X1 , X2,.

M 4 = max 11V T(i/m) II max 11 W°t 11 in distribution,m aml{(i/m)(1 - im)}r '0<'< {t(1 - t)} 2

for a.e. x1 , x 2 ,..., where VT (i/m)= V°(i/m){(i/m)(1 - i/m)}2.

In the above Theorem 3.3.3, WT and W2° are independent since i - j- 0 and

2' - V - 0 as i,j - oc. Thus the MLRS may not converge to the limiting distribution

given above if the empirical distribution of the zx's does not satisfy these conditions. We

will discuss this more carefully in the following section describing how covariance structure

depends on the spacings of the z. 's.
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3.2.2. When the independent variable is fixed

This section will show that the MLRS, M3 and M4 converge to the maximum norm

of two-dimensional Gaussian processes when the za's are fixed. In the preceding section,

it was seen that V and V2 are asymptotically independent conditionally on the zx's when

the first and second sample moments of the zx's converge. The covariance function which

was given in (3.4)-(3.6) explains the effect of the spacing of the zj's on the distribution of

the MLRS. In the following theorem that gives the limiting distribution of the MLRS, we

use the representation of (I 1 (i/m), V' m(ilm)) as "

ai,k~k, E~ bC.,,)
k=1 k=1

where a,,k was given in (2.6) and

b ,k - { (in -i/--m )Q.-- -Q , , k < i

(i/m)(1 - i/m)QX.iQ..'i zt -, >

Here we assume that a 2 is known and hence without loss of generality equals one and

begin with the case in which the z,'s are uniformly spaced.

Theorem 3.2.5.

Suppose that x, = ji/m for j I,..., m.

Under HO, as m - x and m,/m -t t, for i = 0, 1,

M 3 = max 1 Vm(/m)-- max V(t) in distribution, (3.7)

where V is a two-dimensional Gaussian process with mean 0 and a covariance matrix,

C o y [V ( t ) ,V ( ) ] 1A t .)

12 is an identity matrix and 
%

(A 2 1(t,s) A2 2(t,s)).

$tI'

S"
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with

-s(1 - {)D(t,ti)D(s, s)}
122(t,s)= 0t(1- s)3 D(s,t)

s3(1 -t)3

= t(1-s) , t-s

A 1 2(t,s) = {3t(1 ) {%D(t,t s ),
3t3(1 - 0) t)D(s, s))

S= f t (1 31 _______'1s) s1 - t)f{D(t,t)D(s,s)}

and

D(s,t) 1 - 3s(1 - t) for t < s.

Proof : In proving this result, we have only to show that

V, -. V in distribution.

To prove that the finite-dimensional distributions of Vm converge to those of V, it suffices

to show that for any sets of (rl,...,r,) and (ij,.... i,) such that (il/m,.. ., i,/M/) -

(t,. . .,t) as m -- oc,

E(expf i 1: (rl kVlm,(ik/M) + r2,kV'2,m(ik/M)) 1
k= 1 W.

n

E[exp{iZ(r,kV(tl) + r2 ,kV2(t))}] in distribution,
k=1

which follows from the same argument in Theorem 2.2.6. In Theorem 2.2.6, we have shown

that the sequence {Vi,,) is tight and the similar argument shows that the sequence {V2 ,,}

is also tight. Lemma 2.2.5 now implies that the sequence {V,. = (V,,., V2 ,,,)} is tight.

And hence Vm -- a V in distribution. Therefore (3.7) follows from the continuous mapping

theorem. I
I 

%
The rest of this section is devoted to a generalization of Theorem 3.2.5 to the case

where x. f(j/m) for some integrable function f. In fact, we need only to figure out
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the limiting covariance function to find the limiting distribution of the MLRS, which is

described in the following theorem. The proof will be omitted since it is similar as that

of Theorem 3.2.5.

Theorem 3.2.6.

Suppose that z, = f(j/m) j = 1,..., m, for some integrable function f such that

f(O) = 0 and f(1) = 1.

Under Ho, as m - oc and mi/m -*t, for i =0,1, S

M 3 = max 11 Vm(i/m) -. max V(t) II in distribution.
Mo:5i<M, to~st<tl

where V is a two-dimensional Gaussian process with mean 0 and covariance matrix

Coy [V(t), V(3)]= 12 .)(2. 12)
with

A t(1 - S)} I2 D (s.t 0'a,
A(1 - ) {D(t,t)D(s,s))

( h(t)D(s,)) - h(s)] D(s, t)
h(s)[D()t,t) h(t)]I {D(t,t)D(s,s)j

{ t[D(s.s) - h(s)] }(1- s)g(s)- (1- t)g(t)
-\ 12(t, S) = 11

IL~s)( 1- t) D.LI)~s s)JI w%

h(i)(1 -~ s) 2ag(s) - tg(t) .

A21(i,) Ns[D(t, t) -h(t)] {D(t, t)D(s, s)} :

and
g(t) =-- f: f(u)du - (Jo f(u)du)/t S"'

{(1 - t)[fc: p(u)du - (fo f(u)du)2l} a."---

h(i) = f (u)du - (f f(u)du)I/t

[f0t fi(u)du - (fo f(u)du)
2 ]

00

D(s. t) = 1 - s(1 - t)g(s)g(t) for t < s.

'a.,%.
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Remark 3.1. In Chapter 2, it was discussed that covariance function depends on the

configuration of the values of the independent variable only through the function g. In the

case where both the intercept and the slope change, one more function h is involved to

explain such a dependence. Also g(t) = V3 and h(t) = t3 when f(u) = u, which is the

case in which zj = j/m.

When the variance is unknown, we obtain the same limiting distribution of A14 as

that of M 3 , which is stated in the following corollary.

Corollary 3.2.7.

Suppose that x3 = f(j/m) j = 1.... m, for some integrable function f such that

f(0) = 0 and f(l) = 1.

Under HO, as m --- oo and mi/m -. t, for i = 0, 1,

AM4 = max jj V,(i/m) i max 11 V(t) in distribution,,,o:5i<Mj to:5<tlh

where V is a two-dimensional Gaussian process defined in Theorem 3.2.6.

3.3. Approximations to Significance Levels

Now our concern is how to approximate significance levels of X1 3 and M 4 . We follow

the basically same arguments used in Section 2.3, extended to boundary crossing problems

by a discrete stochastic process which has two-dimensional state space and one-dimensional

time parameter. In Section 3.3.1, we give an asymptotic expression which can be used

to approximate Pr{M 3 < b} when the zj's are random, using the argument developed in

Siegmund (1986, Chapter 5). Then we derive an approximation to the right-hand tail of

the distribution under H0 of M 3 when the zj's are fixed. Since these tail probabilities

are interpreted as significance levels, it is important that they be accurate when the true

probabilities are in the range .01 - .10. We perform Monte carlo experiments and discuss

how accurately the asymptotic expressions approximate the actual distribution. Also it

will be discussed how well significance levels of M 4 which is the MLRS when 02 is unknown.

can be approximated by the asymptotic result derived for the known variance case.

II'S.
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3.3.1. When the independent variable is random 0

In Section 3.2, we showed that

M3 - ax I W°(t) 1 in distribution,905<91 (t(l_ t)}

where WO is a two-dimensional Brownian bridge process on [0,1] and m,/m - ti. for i =

0, 1, as m - oc. In principle, we can approximate the significance level of the test,

Pr{M3 > b}, by the tail probability of this limiting distribution. James, James, and

Siegmund(1987) give an approximation to

Pr{ max 1j W°(t) I/{t(1 - t)} > b),

where WO is a d-dimensional Brownian bridge process. As in Section 2.3.1, the approx-

imations to tail probabilities of .M3 by those of this limiting distribution are too crude.

Since the exact distribution of Ma3 is too complicated, we shall now consider an analogous

discrete time result as in Section 2.3.1. In the following proposition, we derive an approx-

imation to the tail probability defined in terms of a Brownian bridge process observed at

discrctc instants of time, which is a generalization of (3.12) in Siegmund (1986).

Let T = inf{n : n > M0 , 11S,11 b{n(1 - n/m)}I), where S, = zi + -. + z, and z's

are independently normally distributed d-dimensional random variables with mean 0 and

indentity covariance matrix. And let Pr(0)IA} = Pr{A I Sm = 0}.

Proposition 3.3.1.

Assume that b - oc, Mo - 00, m ---+ 00, m - 00 in such a way that for some

0 <to < t1 < land b>0,

rn,/m -- t, for i =0, 1, and b 2/M - a.

Then as mr oo

Pr(- ){T < m,) b b-T2('-T)[r(d/2)] -  r ; ' - ) r-(r + a/r)dr (3.8)0 1

m-rn-(tfo i- ,1,db -,,- a.

Then as m - 00

"P r 0 {T""% < ' " in 1 )"- 6T ' '- 2( [r Jb m -m(i)jii r' % +.. a/ d (3.8 "5
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Proof : (3.8) follows from the extension of the argument in the proof of Theorem 3.11 in

Siegmund (1986). 1 4

For d = 2 we obtain the desired result. Table 7 indicates the accuracy of this asymp-

totic expression to approximate significance levels of M 3 and M 4 when the independent

variable is random. This asymptotic expression gives a crude idea about the significance

levels and improves the continuous approximation substantially.

3.3.2. When the independent variable is fixed

When the independent variable is fixed, the MLRS involves a two-dimensional Gaus-

sian process with covariance function given in (3.4). Since the Gaussian process involved

is again non-differentiable and non-stationary, we follow the same ideas as in Section 2.3.2

to derive an asymptotic expression for Pr{M3 > b). However the situation is more compli-

cated than in Section 2.3.2, since we have to deal with two dimensional Gaussian process

whose coordinates have non zero covariance.

The following lemma reduces this boundary crossing problem by Gaussian process .N P

which has one-dimensional time parameter and two-dimensional state space to the problem

involving Gaussian process with one-dimensional time parameter and state space, so that

the derivation of an asymptotic expression follows from modifications of the calculations

in the one-dimensional case.

Lemma 3.3.2.

Let {V(t) = (V(t),V2 (t))} be a two-dimensional stochastic process. Then

Pr{ max JIV(i/m)ll > b}
mo<m1

= Pr{ max sup [cos0 1(i/m)+sinGV 2(i/m)) > b} (3.9)

Proof: Note that

cos eV(i/m) + sin OV2(i/m) = ((cos 0, sin 0), (V(i/m), V(i/m)))

- [IV(i/m)jf cosw.

• r % • f " " ,,r " " ,'.,. ." ." , . , ',. ,, ." €' ,, € ' - ,, -. -,,"''°'"t' ' ',,.'.
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where (.,.) is an inner product of two vectors and w is the angle between (cos 9, sin 9) and

(V(i/m), V(i/m)). Then taking the supremum over 0< w < 27r, (3.9) holds. I

We are now in a position to modify arguments used in Section 2.3.2. To begin,

we consider the case where x. = j/m. From Lemma 3.3.3 through Theorem 3.3.7, it

is assumed zj = j/m for j = 1. ,m, Zm(i/m, 0) = cosOVI(i/m) + sin 9V2 .(i/m)..

In Section 2.3.2, Cov[Um(t + h), Um(t)] = C(t)h + o(h), so that we took the distance

between points of the grid, h, as 1/m to make b2 h o a. Note, however, that 6

Cov[Z,(t + Mo + b), Z,(t,o)] - 1 = C1(t,8)h + C2(t,e)b2 + o(h) + 0(62).

Thus under the assumption that b2 /m - a as m -. oo and b - o, we take h and 6

such that b2 h o: a and b oc a, so that h o: b2. Hence we use the normalized process

Zt, (i, c) = b(Z (t + i/m, 0 + c/'-m) - b), where b2 /m - a.

Lemma 3.3.3.

Suppose that zj = j/m for j = , m.

Let Zm(i/m, O) = cos OV,m(i/m) + sin OV2 ,m(i/m), and

Zt,,(i, c) = b(Z, (t + i/m. + c/Vm/') - b), where b2/m = a.

Then as m - oc and b -* o,

Zbm(i, c) - x Zbm(0, 0)-ri = -#A,(t, f)i - ac 2 /2 + o(i), S
Coy [Z (i, ci) - X, Z,(, c) - z Z -,O,, zi

= 2,.(t, 0)rin(il, i2) + cIc 2a + o(1), %

where

() {1 - 6t(1 - t)] sin 29 - "3(2, - 1)costsin 6 + (1/2))a
pat9 (-tDt) (3.10)

D(t,t) = 1 - 3t(1 - t).

Proof: These results follow from straightforward calculations. I_,

A,%
A:P
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Lemma 3.3.4.

Fix n, h, and a. Then for each (t, 6) there is a constant HR(t, 0, n, h) < oc such that,

if b - cc, m - o, and b2/M -, a, then

Pr{ max sup Zn(i + i/m,G+e/vrm)> bc/[-)] --. 1 + Ha(t,0,n,h),
O<t<n O<c<h b.

where

H,,(t,0,n,h)= exp(-x)Pr{ max Y '9 (i)+ sup Sa(c) > -x}dx,
f "O<i<n O<c<h

and y,(i) is a partial sum of i.i.d. normal random variables with mean -Ma(t,O)

and variance 2,s 0 (t,0),

S,(C) = cV/aS 1 - c 2a/2 with S1 "- N(O, 1)

and {Y' 8 (i)} and {Sa(c)} are independent.

Proof : By the previous lemma, the limiting process can be represented as

Y.' 9(i) + S(c) = [aa(t,O)W(i) - MA(t,O)i] + [c'FaSl - c2 a/2],

where W is a standard Brownian motion and or.(t,8) = 2 A.(t,0). Then, following the

same argument as in Lemma 12.2.3 of Leadbetter, Lindgren, and Rootzen (1983),

Pr{ max sup Zm(t + i/m, 6 + c/V/" ) > b}l[--)] -- 1 + H,(t, e, n, h),
O<i<n O<c<h /bJ

where c takes real values. I

Lemma 3.3.5.

For each (t, 8), there exists a function H,(t, 8) such that

lim Hd(I, O, n, h)/(nh) = H.(t, O) uniformly in t and 6.

As b - o and m -- oo,

Pr{ max su Z(i/m,c/CA) _ b}/ [b2 o(b)] -- [ HI(t,e)dedt/a . S
to:5'/r<tl t. /, <2

"Z.5,,
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Proof: Let n and h be fixed integers and

Bk, = { max sup Z(i/m,c/IV) > b}
k,<i<(k+1),i IA<c<(I+1)h

= { max sup Zm((kn + i)/m, (lh + c)/vm) b}
O<,<n o<c<h

Then it can be shown that

K, L,

Pr{ max sup Z,(i/m,c/i) >__ b} - E .P{B,,
Co5i/-5t, O<C/lr <Sr. k=K o l=Lo

where Kon = io, Kin = mi, Lo = 0, L, = 27rvr/-/h, K, - Ko = Lm/nJ, and L, - Lo0 =

L2rVm/hj.

Now Lemma 3.3.4 implies that

KI L, K, LI

Z P{Bk,,} - (b)/b] F [i + Hd(kn/ml,/,/in,h))
k=Ko I=Lo k=Ko I=Lo

KI LI

, b2 (b)[2r + S L H(kn/m, lh/vrmi,n,h)]/(nhav/a).

k=Ko I=LO

Therefore Pr{ max sup Zn(i/m,c/vWm) > b}/[b2 0(b)]

Urn i H 0 (t, , n, h)d~dt/(nhavr)

I -o t O 0

" I H-(t, o)dOdt/(avi),

which completes the proof. |

Lemma 3.3.6.

For each fixed (t, 0),

ti 27r 3 (

"I B(t,O)dOdt/a2 = 1 (t,)[2u(t,9)] dOdt /al, (3.11)
'o0 to

where pa(t, 0) was defined in (3.10) and u*.(t,6) = { (t,0)/2 .

Proof: Note that

H,,(t.0,n, h) = exp(x)Pr{ max Ya'-(i)+ sup S(c) x }dz,
Jo 0<i<n ch

%I



Section 3.3: Approximations to Significance Levels 60

tG ewhere Y"' (i) and S.(c) have the same representation as in Lemma 3.3.4.

Let
Pr{ max Y '(i) + sup S.(c) = 1-R(x).

o<,<n a O<c<h

Then
(00

Ha(t,0,n,h) -- exp(x)[1 - R()]dx

f exp(x) dR(y)d."

= j j exp(z)dxdR(y)

= exp(y)dR(y) - 1

= exp(y)dF(y)1 exp(y)g(y)dy- 1

P00 P00

- exp(y)[1 - F(y)]dy + 1 exp(y)g(y)dy} - 1,

where
1 - F(y) = Pr{ max Y'(i) > y)

1 - G(y) = Pr{ sup Sa(c) > yl.
O<C<11

By the same argument as in Lemma 2.3.4, as n -. oc,

J exp(y)[1 - F(y)]dy/n - Ua(t,O)v[2M:(t,0)].

And it can be shown that, as h -- o,

o00 exp(y)g(y)dy/h -- a/(21r)

using

1/2. if y=O

g(Y) if 0 < y < h2a/2

0(y/(hV'a) + h-./fa/2)/(hV~a-), if y : h 2 a/2. *e
Then

Ha(t, . fn, h)/(nhal)- /a(t, O)v[2p*(t, 0)]/(aV% ).

as n, h---.

SSMM
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Theorem 3.3.7.

Assume that b - o, mo - oc, m, - oo, and m - oo in such a way that for some

0< to < < 1 and a>O

m /m - t,, i = 0, 1 and b2 /m -- a.

Then as m - oc,

Pr{ max IIVm(i/m)I > b 0 b) f v2Ua (t,O)]u,(t,O)dtl(aV/r),
m0<i<,, t. U

(3.12)

where j.(t,0) is defined in (3.10) and u*(t,O) is defined in (3.11).

Table 8 indicates the accurac. of (3.12). From these numerical results, it can be

confirmed that (3.12) is quite an accurate approximation to the significance level of M3

and also gives a reasonable approximation to the tail probability of the null distribution

of Al 4 . In the rest of this section, we generalize Theorem 3.3.7 to the values of the x,'s

which satisfy some mild conditions. Proofs will be omitted since they follow closely those

of the previous theorem.

Lemma 3.3.8.

Suppose that x, = f(j/m), j = 1,.. .,m, for some integrable function f such that

f(O) = 0 and f(1)= 1.

Let Zm(i/m, 8) = cosOVi,,(i/m) + sin OV2,,(i/m), and

Zt(i,c) = b(Z(t + i/m,8 + cIV.-/) - b), where b2 /m = a.

Then as m - oc and b - oc,

E[Zb,(i, c) - xlZt,. (0,0) = x] = -p.(t,O)i - ac2 /2 + o(1),
Cov[Z'0(il, C) - X, Z"' (i 2 , c 2) I- Zl'~(OO) =]

= 2,uo(t,O)min(i,i 2) + clC2a + o(1), " "

where

ua(t ,6) = {I1 [t(I - t)] + sin 2 (6)A I (t) - cos &sin 6A 2(t)}a/[2D(t)] (3.13)

#" " ,,t i" " ° * '
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AI(t) = h'(t)[D(t)]2 + 2h(t)g(t)[h(t)g(t) - tD(t)E(t) - [h(t)2g(t)D(t)]
h(t)CD(t) - h(t))

D(t)

t(1 - 0'

A 2 (t) = 2[h(t)g(t) - tD(t)E(t)l/{t(1 - t)h(t)[D(t) - h(t)]I ,

D(t) = 1 - g2 (t)t(1 - t),

E(t) = (t) - -t)g'(t)-

Proof: A straight forward calculation suffices. I

Theorem 3.3.9.

Suppose that xj = f(j/m), j = 1..., m, for some integrable function f such that

f(0) = 0 and f(1) = I.

Assume that b -- c, mo -- c, rn1 - oo. and m -- oc in such a way that for some

0< to <11<1 and a>0

mi/m - ti, i 0.1 and b2 /m -- a.

Then as m - 0,

Pr( max jjVm(i/rn)j[ b} 0,6b(b) y['27r (2u.(t, 8)]#.(t, O)dgdt/(a vfr,mot<'<r Ito 1

(3.14)

where Mi,(t, 8) is defined in (3.13) and p*(t, 0) = {u.(t, 0)/2}2.

In the case of x3 = f(j/m), u,,(t, 8) involves two different functions h and g through

which the distribution of the test statistic depends on the configuration of the xj's. As a

matter of calculation, this case is more complicated than the case of the uniformly spaced

xj's. Hcwevcr previous Monte Carlo experiments lead us to expect (3.14) to be quite

good approximations. In this chapter, we have not considered powers and confidence

regions. For a confidence region of the change point the method of Cox and Spijdtvoll

(1981) can be used, and the argument in Section 2.4 might lead us to a generalization of

approximations to powers and confidence regions.

-
'S
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Chapter 4

Concluding Remarks

As discussed in Chapter 1, the exact null distributions of most of the likelihood ratio

statistics are too complicated to deal with. Most of previous works have been done by

numerical or Monte Carlo methods, e.g. Quandt (1958), Beckman and Cook (1979),

Maronna and Yohai (1978), etc. An analytic approach was taken by Worseley (1983)

who derived appruximations to upper bounds of the null distribution functions of the

likelihood ratio statistics.

An important characteristic of the tests considered in Chapters 2 and 3 is that they

involve Gaussian processes. Using methods developed to solve boundary crossing prob-

lems by a Gaussian process we derived quite accurate approximations to significance levels

in various cases. The models that we studied are simple linear regression models, Al-

though we do not consider more complicated models and related problems like confidence

regions in general cases, this dissertation may give some insight into those problems. Note

that in both (2.16) and (3.12), b e(b) ft z[2p(t, .)]Iu(t, .)dt/a accounts for the boundary

crossing probabilities by the given Gaussian processes with respect to time and the in-

tegration with respect to the angle 6 is involved in (3.12) basically because of the angle

parameter introduced to reduce the 2-dimensional problem to the one-dimensional case.

This comparison may lead to a generalization of our results. In testing for a change in

the coefficient of the multiple regression model, the MLRS is the maximum norm of a d-

dimensional Gaussian process. By the same argument in Lemma 3.3.1, we can convert

this boundary crossing problem by a d-dimensional Gaussian process to a one-dimensional

problem with additional angle parameters. Thus, in general, once the covariance func-

tion of the Gaussian process is evaluated, a similar argument may be applied to find
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asymptotic expressions to approximate significance levels. In our models, the change

point is assumed to be one of the data points. Thus our model might be suitable to a

set of data which involves discrete time such as annual gross domestic product, number of ,,

accidents in consecutive years, and so on. Hinkely (1971) studied a set of data obtained

from the experiment to determine the relationship between blood factor VII production . ,

and wafarin concentration. In such a case, it is more reasonable to consider a continuous

model that a change occurs at some point in the range of the independent variables and

two-phase regression line is continuous. Also this example gives a good explanation why

we need to think about the two-phase regression model rather than some alternative such

as parabolic one.

In many cases a two-phase regression can only be a reasonable approximation, ade-

quate for many purposes. However it is also important to find an appropriate model. As

Beckman and Cook (1979) pointed out by example, the continuity assumption may lead

to very different estimates of the parameters. The choice of the model is to some extent a

matter of experience and common sense. Even though the model should be decided from

the biological, economic, or some other particular viewpoint, our model can be applied

to give some insight into the decision of a change in the regression relationship and our

approximations can be used as convenient standards.

-.1

,

S
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Table 1. Approximations to Pr{M1 > b}

When Only the Intercept Changes

Y 0 1
m b Pi P2 True probability

10 1.9571 0.4936 0.2656 0.25
2.3854 0.2393 0.1037 0.10
2.6595 0.1340 0.0511 0.05
3.1492 0.0384 0.0118 0.01 P.

15 2,0171 0.4522 0.2996 0.25
2.4412 0.2142 0.1178 0.10

2.7224 0.1159 0.0568 0.05
3.2220 0.0312 0.0126 0.01

20 2.0632 0.4215 0.2657 0.25
2.4733 0.2006 0.1080 0.10
2.7321 0.1133 0.0556 0.05
3.2963 0.0250 0.0102 0.01

30 2.1190 0.3856 0.2634 0.25 'K
2.5253 0.1800 0.1077 0.10
2.8006 0.0961 0.0529 0.05:6
3.3963 0.0185 0.0086 0.01

40 2.1487 0.3672 0.2645 0.25
2.5598 0.1672 0.1068 0.10
2.8429 0.0866 0.0518 0.05
3.3241 0.0230 0.0121 0.01

70 2.2092 0.3313 0.2602 0.25
2.6274 0.1441 0.1027 0.10
2.9131 0.0726 0.0487 0.05
3.4527 0.0155 0.0093 0.01

Mo=0.1*m, m, =0.9.m

P, Approximations by A.2.3

P2 Approximations by A.2.4

e".o



Table 2. Approximations to Pr{M, > b) 10

p..

When Only the Intercept Changes

'V.

m b p (p) True probability 

10 2.1732 0.1888 (0.1695) 0.25 '

2.4692 0.0587 (0.0842) 0.10

2.6146 0.0256 (0.0577) 0.05 _

2.8404 0.0035 (0.0306) 0.01

15 2.1672 0.2475 (0.2203) 0.25

2.5133 0.0860 (0.0985) 0.10

2.6955 0.0415 (0.0611) 0.05
3.0521 0.0058 (0.0217) 0.01

20 2.1703 0.2381 (0.2139) 0.25
2.5324 0.0883 (0.0935) 0.10 :
2.7403 0.0429 (0.0544) 0.05 .
3.1280 0.0075 (0.0175) 0.01 ;

30 2.1810 0.2520 (0.2325) 0.25
2.5769 0.0925 (0.0949) 0.10
2.8172 0.0435 (0.0506) 0.05

3.2502 0.0079 (0.0139) 0.01
40 2.2108 0.2484 (0.2335) 0.25"e

2.5975 0.0963 (0.0974) 0. 10 ,
2.8312 0.0481 (0.0530) 0.05,"'

3.2674 0.0100 (0.0145) 0.01

70 2.2431 0.2524 (0.2431) 0.25 ,

2.6415 0.0988 (0.0991) 0.10 ..
2.8952 0.0485 (0.0511) 0.05 .,
3.3743 0.0097 (0.0121) 0.01

II10 2.73 0.18 (0.16,=95 0.2

p' Approximations by A.2.4

%xt tt ; ,t .( ...;" ' : . " ", ,:e""." " • . .,. . , . P ". r . ." ,'e ',-
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Table 3. Approximations to Pr{Mi > b,}, i= 1,2.

When Only the Intercept Changes

zi = i/m, j= ,...,m

m b, p b2  (p') True probability

10 2.0756 0.2675 2.2625 (0.1736) 0.25 -

2.4519 0.1073 2.4582 (0.0941) 0.10
2.7157 0.0517 2.6236 (0.0673) 0.05
3.2747 0.0086 2.8425 (0.0314) 0.01

15 2.1695 0.2769 2.3093 (0.1931) 0.25
2.5812 0.1005 2.6036 (0.0897) 0.10
2.8500 0.0468 2.7647 (0.0565) 0.05
3.3413 0.0095 3.0455 (0.0236) 0.01

20 2.2315 0.2883 2.3395 (0.2136) 0.25
2.6245 0.1067 2.6553 (0.0946) 0.10
2.8665 0.0539 2.8388 (0.0559) 0.05
3.3924 0.0098 3.1921 (0.0183) 0.01

30 2.3271 0.2743 2.3939 (0.2314) 0.25
2.7133 0.1046 2.7332 (0.0969) 0.10
2.9598 0.0518 2.9517 (0.0516) 0.05
3.4829 0.0093 3.3466 (0.0144) 0.01

40 2.3632 0.2846 2.4154 (0.2498) 0.25
2.7509 0.1083 2.7605 (0.1039) 0.10 0
3.0144 0.0510 2.9825 (0.0550) 0.05
3.5135 0.0099 3.4327 (0.0128) 0.01"",,

70 2.4357 0.2933 2.4635 (0.2736) 0.25 %
2.8348 0.1078 2.8328 (0.1076) 0.10
3.1037 0.0497 3.0712 (0.0543) 0.05
3.5847 0.0102 3.5166 (0.0128) 0.01

mo = 0.1 * m M, m = 0.9 * m

b, Percentiles of M, (a 2 is known)

p Approximations by (2.16)

b2 Percentiles of M 2 (2 is unknown)

p': Approximations by (2.16)
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Table 4. Approximations to Pr{Mi > b}

z,= j/M, j =1,..., m.

b\ m 10 20 30 40 50

2.00 0.3150 0.4569 0.5416 0.6002 0.6441
2.05 0.2829 0.4136 0.4922 0.5468 0.5877
2.10 0.2534 0.3733 0.4460 0.4966 0.5347
2.15 0.2263 0.3359 0.4028 0.4496 0.4849
2.20 0.2015 0.3014 0.3628 0.4059 0.4385
2.25 0.1789 0.2696 0.3257 0.3653 0.3953
2.30 0.1584 0.2404 0.2916 0.3278 0.3553
2.35 0.1398 0.2138 0.2603 0.2933 0.3184
2.40 0.1231 0.1896 0.2317 0.2616 0.2845
2.45 0.1081 0.1676 0.2056 0.2327 0.2535
2.50 0.0946 0.1478 0.1819 0.2064 0.2252
2.55 0.0826 0.1300 0.1605 0.1825 0.1995
2.60 0.0719 0.1139 0.1412 0.1610 0.1762
2.65 0.0625 0.0996 0.1239 0.1416 0.1552
2.70 0.0541 0.0868 0.1084 0.1241 0.1363
2.75 0.0468 0.0755 0.0946 0.1085 0.1194
2.80 0.0403 0.0655 0.0823 0.0946 0.1042
2.85 0.0346 0.0566 0.0714 0.0823 0.0908
2.90 0.0297 0.0488 0.0618 0.0714 0.0788
2.95 0.0254 0.0420 0.0533 0.0617 0.0683
3.00 0.0216 0.0360 0.0459 0.0532 0.0590
3.05 0.0184 0.0308 0.0394 0.0458 0.0508
3.10 0.0156 0.0263 0.0337 0.0392 0.0436
3.15 0.0132 0.0223 0.0288 0.0336 0.0374
3.20 0.0111 0.0190 0.0245 0.0286 0.0319
3.25 0.0094 0.0160 0.0208 0.0244 0.0272
3.30 0.0079 0.0135 0.0176 0.0207 0.0231
3.35 0.0066 0.0114 0.0149 0.0175 0.0196
3.40 0.0055 0.0096 0.0125 0.0148 0.0165
3.45 0.0046 0.0080 0.0105 0.0124 0.0139
3.50 0.0038 0.0067 0.0088 0.0104 0.0117
3.55 0.0032 0.0056 0.0073 0.0087 0.0098
3.60 0.0026 0.0046 0.0061 0.0073 0.0082
3.65 0.0026 0.0038 0.0051 0.0061 0.0068
3.70 0.0018 0.0032 0.0042 0.0050 0.0057

r v
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Table 4. (Continued)

b\ m 60 70 80 90

2.00 0.6787 0.7069 0.7306 0.7508
2.05 0.6201 0.6465 0.6687 0.6877
2.10 0.5648 0.5895 0.6102 0.6280
2.15 0.5129 0.5358 0.5551 0.5716
2.20 0.4643 0.4856 0.5034 0.5188
2.25 0.4191 0.4387 0.4552 0.4694
2.30 0.3772 0.3952 0.4104 0.4234
2.35 0.3384 0.3550 0.3689 0.3809
2.40 0.3028 0.3179 0.3306 0.3416
2.45 0.2701 0.2838 0.2954 0.3054
2.50 0.2402 0.2527 0.2632 0.2723
2.55 0.2131 0.2243 0.2339 0.2421
2.60 0.1884 0.1986 0.2072 0.2146
2.65 0.1662 0.1753 0.1830 0.1897
2.70 0.1461 0.1543 0.1612 0.1672
2.75 0.1281 0.1354 0.1416 0.1470
2.80 0.1120 0.1185 0.1240 0.1288
2.85 0.0977 0.1034 0.1083 0.1126 p

2.90 0.0849 0.0900 0.0943 0.0981
2.95 0.0736 0.0781 0.0819 0.0853
3.00 0.0637 0.0676 0.0710 0.0739
3.05 0.0549 0.0584 0.0613 0.0639
3.10 0.0472 0.0502 0.0528 0.0551
3.15 0.0405 0.0431 0.0454 0.0473
3.20 0.0346 0.0369 0.0389 0.0406
3.25 0.0295 0.0315 0.0332 0.0347
3.30 0.0251 0.0268 0.0283 0.0296
3.35 0.0213 0.0228 0.0240 0.0251
3.40 0.0180 0.0193 0.0204 0.0213
3.45 0.0152 0.0163 0.0172 0.0180
3.50 0.0128 0.0137 0.0145 0.0152
3.55 0.0107 0.0115 0.0122 0.0128
3.60 0.0090 0.0097 0.0102 0.0107
3.65 0.0075 0.0081 0.0085 0.0090
3.70 0.0062 0.0067 0.0071 0.0075

mo=0.1*m, m,=0.9.m

A~p. ,G ed-if le".
r~ A m d'R-



70

Table 5. Approximations to Pr{M, > bi}, i= 1,2

When Only the Intercept Changes

Xj = (j/,M.)L j = M,..,

True

m b, Pi P2 b2  (p') prob.

10 2.0505 0.2780 0.2740 2.2472 (0.1771) 0.25
2.4506 0.1061 0.1050 2.4949 (0.1050) 0.10
2.7066 0.0522 0.0518 2.6179 (0.0518) 0.05
3.2249 0.0101 0.0100 2.8391 (0.0352) 0.01

20 2.2109 0.2902 0.2886 2.3253 (0.2234) 0.25
2.6230 0.1055 0.1050 2.6493 (0.0982) 0.10
2.8938 0.0489 0.0487 2.8336 (0.0584) 0.05
3.3611 0.0108 0.0108 3.1754 (0.0202) 0.01

30 2.3073 0.2835 0.2827 2.3709 (0.2450) 0.25
2.7085 0.1045 0.1042 2.7229 (0.1005) 0.10
2.9652 0.0502 0.0501 2.9413 (0.0539) 0.05
3.5121 0.0083 0.0083 3.3769 (0.0133) 0.01

40 2.3487 0.2913 0.2908 2.4024 (0.2575) 0.25
2.7526 0.1065 0.1063 2.7729 (0.1007) 0.10
3.0146 0.0503 0.0502 2.9980 (0.0528) 0.05
3.4915 0.0106 0.0106 3.4377 (0.0128) 0.01

50 2.3754 0.2983 0.2979 2.4220 (0.2681) 0.25
2.7630 0.1140 0.1139 2.7788 (0.1092) 0.10
3.0010 0.0581 0.0581 3.0078 (0.0569) 0.05
3.5039 0.0114 0.0114 3.4518 (0.0137) 0.01

MO =0.1*m, m =0.9*m

b, Percentiles of M, (a 2 is known)

P1 P2 Approximations by (2.19)

b2 Percentiles of M 2 (a2 is unknown)

pt Approximations by (2.19)

.~ C.,.A, N, C % ~ NJ ~a %'
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Table 6. Approximations to Powers

When Only the Intercept Changes

,= J/m, = 1,...,m

True True

a2- p m LRT prob. MLRT prob.

3.6 10 20 0.8903 0.8854 0.9012 0.8974
5 0.9794 0.9681 0.9863 0.9720
3 0.9675 0.9573 0.9746 0.9622

3.0 10 20 0.7157 0.7180 0.7351 0.7361
5 0.8580 0.8643 0.8708 0.8753
3 0.8391 0.8428 0.8530 0.8557

2 4 10 20 0.4708 0.4840 0.4942 0.5058
5 0.6290 0.6568 0.6510 0.6756
3 0.6045 0.6208 0.6270 0.6420

Critical
value 2.9204 (5%) 2.8665 (5%) 5%

2.4 20 40 0.8800 0.8869 0.8960 0.8988
10 0.9664 0.9619 0.9756 0.9664
5 0.9360 0.9374 0.9472 0.9454

1.6 20 40 0.4893 0.5158 0.5230 0.5364
10 0.6381 0.6757 0.6693 0.7010
5 0.5768 0.6136 0.6096 0.6486

1.0 20 40 0.1887 0.2494 0.2131 0.2639
10 0.2608 0.3312 0.2898 0.3516

0.2289 0.2950 0.2561 0.3041

Critical
value 2.8253 (10%) 2.7509 (10%)
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Table 7. Approximations to Pr{M > bi), i= 3,4

When Both the Intercept and Slope Change

(Y 0: ( 0)1
[m b3  p b4  (p') True probability

10 2.2803 0.1859 2.4911 (0.1289) 0.25
2.6949 0.0856 2.7060 (0.0836) 0.10
2.9598 0.0464 2.8115 (0.0661) 0.05
3.5379 0.0091 2.9682 (0.0455) 0.01

20 2.5024 0.2101 2.6090 (0.1710) 0.25
2.9039 0.8976 2.9081 (0.0889) 0.10
3.1656 0.0463 3.0908 (0.0564) 0.05
3.6775 0.0100 3.4050 (0.0235) 0.01

30 2.5547 0.2052 2.6373 (0.1745) 0.25
2.9692 0.0835 2.9784 (0.0817) 0.10
3.2401 0.0414 3.1834 (0.0483) 0.05
3.6940 0.0105 3.5136 (0.0187) 0.01

40 2.5794 0.2050 2.6405 (0.1819) 0.25
2.9644 0.0891 2.9880 (0.0841) 0.10
3.2474 0.0430 3.2198 (0.0463) 0.05
3.7426 0.0096 3.6063 (0.0149) 0.01

50 2.6238 0.1943 2.6723 (0.1763) 0.25
3.0193 0.0808 3.0338 (0.0780) 0.10
3.2783 0.0410 3.2641 (0.0438) 0.05
3.7726 0.0090 3.6846 (0.0121) 0.01

m0 = 2, m, = 8 for m = 10

mo=0.1*m, m =0.9,m form >20

b3 : Percentiles of M3 (a 2 is known)

p Approximations by (3.8)

b4 Percentiles of M 4 (r
2 is unknown)

p': Approximations by (3.8)

6-,V 

-,q",~
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Table 8. Approximations to Pr{M, > b,}, i= 3.4

When Both the Intercept and Slope Change

rjm, j-- . 25

n b3 p b4  (p') True probability

10 2.3440 0.2917 2.5149 (0.2186) 0.25

2.7557 0.1078 2.7157 (0.1352) 0.10
3.0350 0.0488 2.8207 (0.1032) 0.05
3.5315 0.0095 2.9741 (0.0679) 0.01

20 2.5893 0.2746 2.6871 (0.2287) 0.25
2.9803 0.1015 2.9628 (0 1134) 0.10
3.2348 0.0481 3.1387 (0.0691) 0.05
3.7381 0.0088 3.4394 (0.0273) 0.01

30 2.6711 0.2877 2.7411 (0.2510) 0.25
3.0584 0.1065 3.0619 (0.1098) 0.10
3.3040 0.0516 3.2483 (0.0642) 0.05
3.7634 0.0110 3.6044 (0.0206) 0.01

40 2.7121 0.3025 2.7772 (0.2649) 0.25
3.1058 0.1100 3.1156 (0.1101) 0.10
3.3700 0.0502 3.3256 (0.0596) 0.05

3.8502 0.0098 3.7341 (0.0156) 0.01

50 2.7636 0.2971 2.8077 (0.2717) 0.25
3.1519 0.1122 3.1496 (0.1115) 0.10
3.3863 0.0504 3.3647 (0.0593) 0.05
3.8851 0.0099 3.7778 (0.0152) 0.01

m 0 =2, m, =8 form= 10

mo=0.1*m, m =0.9.m form > 20

b 3 : Percentiles of M3 (o2 is known)

p: Approximations by (3.12)

b 4 Percentiles of M4 ( 2 is unknown)

p': Approximations by (3.12)
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Appendices w
A.1. Basic Facts about Convergence of Probability Measures

Convergence in distribution of a sequence {Xn} of real random variables is tradi-

tionally defined to mean convergence of distribution functions at each continuity point of

the limit distribution function. For random elements of more general spaces not equipped

with a partial ordering, even the concept of distribution function disappears. In Chapter

1 of Billingsley (1968), convergence in distribution for a sequence of random elements was

summarized and now we define the convergence in distribution for random elements using

his results.

Let C = C(O, 1] be the space of continuous functions on (0,1], where we give C the

uniform topology by defining the distance between the points z, y as

d(x, y) = sup I x(t) - y(t) I.

o<t<l

Chapter 2 of Billingsley (1968) contains a theory about the weak convergence in the space

C which is used in this dissertation. Here, we include a brief review of definitions and

theorems which are basic and important.

Suppose now that {JX) is a sequence of random elements in C. That is, for each w in

fR, X,,(w) is an element of C whose values at t we denote by X,,(t,w). For points t 1 ,..., t, in

[0, 1], let 7rt .... , be the mapping that carries the point z of C to the point (z(1 1 ), ... ,z(tk))

of Rk. The finite dimensional sets are now defined as sets of the form 7rl. with H R"

and the finite dimensional distribution of X, as that of 7rt, .... t,X. Since the space of Borel

sets of C with the uniform metric is separable and complete, the finite dimensional sets I'

generate the space of Borel sets. However, the convergence in distribution of ir. ..... tX .IV

does not imply the convergence of X,, in distribution. The difficulty and interest of weak

convergence in C a]!, ome from the fact that it involves considerations going beyond those

of finite dimensional sets. Here is an idea which provides a powerful technique for proving

weak convergence in C. If every sequence of X, contains a subsequence which converges in

distribution, then X,, converges in distribution. In the space C this condition is equivalent
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to "tightness" which is a condition that has the effect of preventing the escape of mass to

infinity in a certain sense. Now we define tightness of a sequence of random elements as

follows: X,, is tight if X,,(O) is tight on line and if for each positive c and q there exists a

6, o < 6 < 1, and an integer no such that

Pr{ sup IX,(S) - X(1) > 6} < 77

for n > no and 0 < t < 1. Then we have the following result.

Theorem A.1.1

Let X, X, X 2 ,. .. , be random elements of C. If the finite dimensional distributions

of Xn converges to those of X, and if {X,} is tight, then X, = X.

To obtain the limiting distributions of the test statistics defined in Sections 2.1 and 3.1

when the independent variables are random, Donsker's theorem was used as an important

tool. Donsker formulated a refinement of the central limit theorem by proving weak

convergence of the distributions of certain random functions constructed from the partial p
sum.

Theorem A.1.2 (Donsker)

Let YI, Y2, . be i.i.d. random variables with mean 0 and finite, positive variance r,,

and let S, = y + .. • + y,,. Define a random element Xn of C by

11
= o + (ft - 1n]T-n)-~t+()

S
Then as n -- oc, Xn converges to a Brownian motion process in distribution.

A.2. Applications of Boundary Crossing Probabilities to Change-Point Prob-

lems

Methods developed to approximate boundary crossing probabilities in fixed sample

statistical problems provide an important tool in this dissertation. Especially, the results .

in Siegmund (1986) and James, James, and Siegmund (1987) developed for change-point

problems were used to approximate the significance levels of the modified likelihood ratio

statistics defined in Sections 2.1. and 3.1. The above two papers are concerned with

J.
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the problem of testing a sequence of normal random variables with constant, known or

unknown, variance for no change in mean versus alternatives with a single change-point.

Let zl,. . ., z,, be independent random variables and consider the case where the x's

are normally distributed with mean u (n) and constant variance. One specific problem is

to test
Ho :(1) = . = #(m) against

H, : 31 < p < m such that

I5,

When the variance is known, Siegmund (1986) suggests

max IS - kSm/m I/{k(l - k/m)}2 (A.2. 1)
m 0 <k<mj

as a test statistic and derives an approximation to the significance level of the test based

on (A.2.1). As an application of the theories of weak convergence of stochastic processes

Pr{ max I - kSmlm II{k(l - k/m)}2 > b) (A.2.2)
ma<k<M2

can be approximated by the corresponding probability defined in terms of a Brownian

motion process W(t) (0 < t < oc). That is, (A.2.2) is approximately

Pr{ IWo(t) I b{t(1 - t)}2 for some el <<1- 2}
(A.2.3)

= (b - b-)6(b) log[(l -C)(1 - 2 )/WC 2] + 4b-1 (b) + o(b-'O(b)),

which is given in Siegmund (1986). The following theorem given in Siegmund (1986)

provides an approximation to the significance level of the test statistic (A.2.1) , taking •

discreteness into consideration.

Theorem A.2.1. *,

Assume that b- o), mo - oc, m - oc in such a way that for some 0 < to < tj <1 5

and b0 > 0

m,/m -- Ii, i = 0, 1 and b/v 4- = bo.

Let = mo for some ! ol E (bo(1 - tl){to(1 - to)}3,bo{ti(1 - ti)).

1P
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Then as m - o,

Pr{ max Ik - kSm/m 1/{k(1 - k/m)} > b}
m0 <k<m1

0b j- -) (A 2.4)

S2bO(b) ]b(m.(_m_,) I-1v(z + b2 /mz)dx + 2[1 - t(b)],

where v is given by (2.10).

In the case of unknown and constant variance, James, James, and Siegmund (1987)

considered the statistic, 0

I Sk - kSM/mI I m22max [ {m (Xn~
m0 Sk<ml Lk(1 - k/m)}11

and provides the following approximation which can be used to approximate the signifi-

cance level.

Corollary A.2.2

Under the same assumptions as in Theorem A.2.1,

Pr{ max [IS-kSm m M - b}
v 0 :k<m, 1{k(-k/m)}2 = -m)1 2 -

I I{/2r} J(I _ X2 )(m-4 )/2d (A.2.5)r

+ (2/lb(1 - b2/m)(m- 4)/2 x2[z M( 2+ (/ir22(I bX- ~z+ b/{(- bo)z}]'dz.

where the second integral on the right side is over

(b{(ml - m - ')/ ( l - bg )b{(m -2m)/(1-b
o)} 2).

%I

,

a,

-U

~ ~ . :.. ~ N .~%. ~ - ~ ....
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